Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}=1-\frac{1}{2004}+1-\frac{1}{2005}+1+\frac{2}{2003}\)
\(=3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)\)
Do \(\frac{1}{2003}>\frac{1}{2004}>\frac{1}{2005}.\) nên \(\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>0\)
Vì vậy \(3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>3\) (đpcm)
\(A=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}\)
\(=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})\)
\(=3+(\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005})\)
Do\(\frac{1}{2003}\)>\(\frac{1}{2004}\)>\(\frac{1}{2005}\)
\(\Rightarrow\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\)>\(0\)
\(\Rightarrow3+(\frac{1}{2003}-\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2005})\)>\(3\)
\(\Rightarrow A\)>\(3\)
2003/2004 + 2004/2005 + 2005/2003
= 1 - 1/2004 + 1 - 1/2005 + 1 + 1/2003 + 1/2003
=(1+1+1)-(1/2004 - 1/2003 + 1/2005 - 1/2003)
= 3 - (1/2004 - 1/2003 + 1/2005 - 1/2003)
Vì 1/2004 < 1/2003 ; 1/2005 < 1/2003
=>1/2004 - 1/2003 + 1/2005 - 1/2003 < 0
=> 3 - (...) > 3
Vậy. ...
K mình nha
2006/2007 lớn hơn 2005/2006
(bàn phím vừa bị đơ dấu lớn, thông cảm)
chọn mìn nha
a, 56 x 12 + 24 x 36 + 24 x36 = 56 x 12 + 12 x 2 x 36 + 12 x 2 x 36
= 56 x 12 + 12 x 72 + 12 x 72
= 12 x ( 56 + 72 + 72 )
= 12 x 200
= 2400
b, 2005 x 178 - 77 x 2005 - 2005 = 2005 x ( 178 - 77 - 1 )
= 2005 x 100
= 200500
**** mình nha nguyễn thùy trang
\(A=2005\times2005\)
\(B=2003\times2007\)
Ta có :
\(A=2005\times2005\) \(B=2003\times2007\)
\(A=2005\times\left(2003+2\right)\) \(B=2003\times\left(2005+2\right)\)
\(A=2005\times2003+2005\times2\) \(B=2003\times2005+2003\times2\)
\(A=2005\times2003+4010\) \(B=2003\times2005+4006\)
Vì ta thấy \(2005\times2003+4010>2003\times2005+4006\)
Mà vế \(2005\times2003\) của A và B đều bằng nhau
nhưng vế \(4010>4006\)
\(\Leftrightarrow A>B.\)