Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=3^1+3^2+3^3+...+3^{99}\)
\(=\left(3^1+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=3.\left(1+3+3^2\right)+...+3^{97}.\left(1+3+3^2\right)\)
\(=13.\left(3+...+3^{97}\right)⋮13\)
Vậy A chia hết cho 13
b) \(3A=3^2+3^3+3^4+...+3^{100}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3^1+3^2+3^3+...+3^{99}\right)\)
\(\Rightarrow2A=3^{100}-3\)
\(\Rightarrow2A+3=3^{100}=\left(3^{50}\right)^2\)
Vậy 2A + 3 là một lũy thừa của 3
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13
x = y .( 2x-1)
vì x, y nguyên nên x chia hết cho 2x -1
suy ra 2.x cũng chia hết cho 2x-1
hay ( 2x - 1 ) + 1 chia hết cho 2x -1
suy ra 1 cũng phải chia hết cho 2x - 1
vậy 2x- 1 là ước của 1 ( là 1 và -1)
ta xét :
2x-1 = 1 suy ra x = 1 suy ra y = 1
2x-1 = -1 suy ra x = 0 , suy ra y = 0
vậy pt này có 2 nghiệm (1,1) và (0,0)
có gì sơ sót mong bạn thông cảm !
chúc bạn học tốt ! Thân !
Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7 . (-1)9 . (-1)11 . (-1)13
= (-1)(-1).(-1).(-1).(-1).(-1)
= (-1)6
= 1
b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)
= 0
Bài 2 :
Đặt A = 12 + 22 + 32 + ... + 102 = 385
=> 22(12 + 22 + 32 + ... + 102) = 22.385
=> 22 + 42 + 62 + ..... + 202 = 4.385
=> 22 + 42 + 62 + ..... + 202 = 1540
Vậy 22 + 42 + 62 + ..... + 202 = 1540
bài 3:
a) 2S=2+22+23+24+...+251
2S-S=251-1
mà 251-1<251
Suy ra:s<251
Chứng minh \(S=3+3^2+...+3^{100}⋮120\)
Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)
Vậy \(S=3+3^2+...+3^{100}⋮120\)
Chứng minh \(P=36^{36}-9^{10}⋮45\)
Cái này dùng đồng dư thức
\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)
Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)
Vậy P chia hết cho 45
Chứng minh \(M=7^{1000}-3^{1000}⋮10\)
Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)
Vậy M chia hết cho 10
A có 2001 số hạng,chia làm 667 nhóm,mỗi nhóm 3 số liên tiếp từ trái sang phải
A=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^1998+3^1999+3^2000)
A=13+3^3.(1+3+3^2)+....+3^1998.(1+3+3^2)
A=13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998) chia hết cho 13
Vậy A chia hết cho 13
Chúc bạn học tốt,ùng hộ mình ha^^
Bạn ơi,3^1001 chứ ko phải 3^1000 như ở đề bài nha^^
Ta có: A = 1 + 3 + 32 + 33 +...+31999 + 32000
=> A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 + 36 ) + ( 37 + 38 + 39 + 310 ) + ... + ( 31997 + 31998 + 31999 + 32000)
=> A = 13 + 33 . ( 1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31997 . ( 1 + 3 + 32 )
=> A = 13 + 33 . 13 + 37 . 13 + ... + 31997 . 13
=> A = 13 . ( 1 + 33 + 37 + ... + 31997 )
=> A chia hết cho 13
Vậy A chia hết cho 13