Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=32.32+25.2-32
=32.32+32.2-32
=32(32+2-1)
=32.33 chia hết cho 33(đpcm)
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324
3C = 32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325
3C - C = -325 - 3
2C = -325 - 3
2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\) + 3]
2C = - \(\overline{..6}\)
⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\)
⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)
b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0
Vì (\(x+1\))2022 ≥ 0
\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:
(\(x,y\)) = (-1; 1)
7^6 + 7^5 - 7^4
= 7^4.(7^2+7-1)
= 7^4. (49+7-1)
=7^4.55
Có 55 chia hết cho 55
Mà 7^4 thuộc n
Suy ra 7^4.55 chia hết cho 55
7^6 +7^5 -7^4 chia hết cho 55
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
A có 2001 số hạng,chia làm 667 nhóm,mỗi nhóm 3 số liên tiếp từ trái sang phải
A=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^1998+3^1999+3^2000)
A=13+3^3.(1+3+3^2)+....+3^1998.(1+3+3^2)
A=13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998) chia hết cho 13
Vậy A chia hết cho 13
Chúc bạn học tốt,ùng hộ mình ha^^
Bạn ơi,3^1001 chứ ko phải 3^1000 như ở đề bài nha^^
Ta có: A = 1 + 3 + 32 + 33 +...+31999 + 32000
=> A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 + 36 ) + ( 37 + 38 + 39 + 310 ) + ... + ( 31997 + 31998 + 31999 + 32000)
=> A = 13 + 33 . ( 1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31997 . ( 1 + 3 + 32 )
=> A = 13 + 33 . 13 + 37 . 13 + ... + 31997 . 13
=> A = 13 . ( 1 + 33 + 37 + ... + 31997 )
=> A chia hết cho 13
Vậy A chia hết cho 13