Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b, \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=21:7\)
\(\Rightarrow x=3\)
c, \(x^{10}=1^x\)
\(\Rightarrow x\in\left\{1;0\right\}\)
\(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32=2^4\)
\(\Rightarrow x=4\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
Phần này mk ko bt làm đâu
\(x^{10}=1^x\)
\(\Rightarrow\)\(x^{10}=1\)
\(\Rightarrow x=1\)
2x = 43 : 25
2x = (22)3 : 25
2x = 26 : 25
2x = 2
=> x = 1
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. a) \(45x-37=53\)
\(45x=90\)
\(x=2\)
vay \(x=2\)
b) \(\frac{x}{9}+500=600\)
\(\frac{x}{9}=100\)
\(\frac{x}{9}=\frac{900}{9}\)
\(\Rightarrow x=900\)
vay \(x=900\)
c) \(576-x=139\)
\(x=576-139\)
\(x=437\)
vay \(x=437\)
d) \(\left(48+x\right)-27=79\)
\(48+x=79+27\)
\(48+x=106\)
\(x=58\)
vay \(x=58\)
2. \(2^5.2^7.2^9=2^{5+7+9}=2^{21}\)
\(3^9.3^2.3=3^{9+2+1}=3^{12}\)
\(10^9:10^7=10^{10-7}=10^3\)
3). \(2.2.2.2.2.2=2^6\)
\(2.3.2.2.3.3.3=2^3.3^4\)
\(10.9.10.10.10.9.9=10^4.9^3\)
1 a) x= 720
b ) x=chín trăm
c)x= 437
d)x=58
bài2 a)= 221 b)312 c ) =102
bài 3 a)=26 b)=22 nhân 34 c )= 103 nhân chín mũ 3
a: =30-22=8
b: =10*(23+17)=10*40=400
c: =21*3-7*(-14)
=63+98=161
d: =-20-[10*10*5^2+16]
=-20-100*25-16
=-36-2500
=-2536
2.4^x - 1 = 128
=> 4^x - 1 = 64
=> x - 1 = 3
=> x = 4
b, 17.4^2 + 83.16
= 17.16 + 83.16
= 16(17 + 83)
= 16.100
= 1600
c, a^5 . 10^10.a^15
= a^20.10^10
d, 3{65 - [5(4 + 2.3) - 15] : 7}
= 3{65 - [5(4 + 6) - 15] : 7}
= 3{65 - [5.10 - 15] : 7}
= 3{65 - [50 - 15] : 7}
= 3{65 - 35 : 7}
= 3{65 - 5}
= 3.60
= 180
\(\frac{10.\left(4^6.9^5+6^9.120\right)}{8^4.3^{12}-6^{11}}\)
=\(\frac{2.5.\left[\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5\right]}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
=\(\frac{2^{13}.5.3^{10}+2^{13}.5^2.3^{10}}{2^{12}.3^{12}-3^{11}.2^{11}}\)
=\(\frac{2^{13}.5.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)
=\(\frac{4.5.6}{3.5}\)
= 8
\(10-\left\{\left[3^x+1:\left(3+17\right):10+3\cdot2^4\right]:10\right\}=5\)
\(\Rightarrow\left(3^x+1:20:10+3\cdot16\right):10=10-5\)
\(\Rightarrow\left(3^x+\dfrac{1}{200}+48\right):10=5\)
\(\Rightarrow3^x+\dfrac{9601}{200}=5\cdot10\)
\(\Rightarrow3^x+\dfrac{9601}{200}=50\)
\(\Rightarrow3^x=50-\dfrac{9601}{200}\)
\(\Rightarrow3^x=\dfrac{399}{200}\)
Xem lại đề