K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

1-2+3-4+5-6+...+99-100+101 
= (1+3+5+...+101) - (2+4+6+...+100) 
từ 1 đến 101 co : (101-1):2+1=51 
1+..+101 = (1+101)x 51:2= 2601 
từ 2 đến 100 co : (100-2);2+1=50 
2+...+100 = (100 +2) x 50:2=2550 
=> A= 2601-2550=51

bạn tích cho mk nha,mk nhanh nhất đó bn!

22 tháng 8 2016

 A=1-2+3-4+5-6+...+99-100+101 
A= (1+3+5+...+101) - (2+4+6+...+100) 
tu 1 den 101 co : (101-1):2+1=51 
1+..+101 = (1+101)x 51:2= 2601 
tu 2 den 100 co : (100-2);2+1=50 
2+...+100 = (100 +2) x 50:2=2550 
=> A= 2601-2550=51

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

14 tháng 6 2017

1.

a) \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)

\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)

\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(=\frac{6}{2}.\frac{10}{39}\)

\(=\frac{10}{13}\)

b) \(\frac{3}{24}+\frac{3}{48}+\frac{3}{80}+\frac{3}{120}+\frac{3}{168}\)

\(=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)

\(=\frac{3}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{14}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)

\(=\frac{3}{2}.\frac{5}{28}\)

\(=\frac{15}{56}\)

14 tháng 6 2017

\(a.\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{11.13}\)

\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(=3.\frac{10}{39}\)

\(=\frac{10}{13}\)

7 tháng 7 2017

a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)

\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)

c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)

do đó : A . A  < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)

10 tháng 8 2019

A=333300

B=25497450

14 tháng 10 2021

dễ mà đọc kĩ đi

22 tháng 10 2017

=-1+-1+-1+...+-1+101

=-1*50+101

=-50+101

=51

22 tháng 10 2017

1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 + 101

ta biến đổi thành : 101 - 100 + 99 -...- 6 + 5 - 4 + 3 - 2 + 1

ta thấy có 101 số hạng ta nhóm 2 số 1 nhóm được 50 nhóm và thừa số 1

mà mỗi nhóm có giá trị bằng 1 => 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 + 101 = 50 x 1 + 1 = 51

27 tháng 6 2017

S   =   1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

Số các số hạng của tổng \(S\)là :

 \(\left(9-1\right)\div1+1=9\)( số hạng )

Tổng của dãy số \(S\)là :

  \(\frac{\left(9+1\right).9}{2}=45\)

                          Đ/S: 45

M  =   1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101

Số các số hạng của tổng \(M\)là :

 \(\left(101-1\right)\div1+1=101\)

Tổng của dãy số \(M\)là :

 \(\frac{\left(101+1\right).101}{2}=5151\)

                                     Đ/S : 5151

27 tháng 6 2017

Số số hạng của dãy trên là : 

         (9 - 1) : 1 + 1 = 9 (số)

Tổng là : 

          (9 + 1) x 9 : 2 = 45 

31 tháng 7 2018

Số số hạng 

 (100 - 1) : 1 + 1 = 100 số 

TỔng : 

      100 x (100 + 1) : 2 = bạn tính nhé 

31 tháng 7 2018



Dấu * là dấu nhân nha bạn
a, 1 + 2 + 3 + 4 +...+ 99 + 100

Số số hạng của dãy số trên là:
(100 - 1) : 1 + 1 = 100 (số)
Tổng của dãy số trên là:
(100 + 1) * 100 : 2 = 5050
                              Đáp số: 5050

b, 2 + 4 + 6 + 8 +...+ 98 + 100

Số số hạng của dãy số trên là:
(100 - 2) : 2 + 1 = 50 (số)
Tổng của dãy số trên là:
(100 + 2) * 50 : 2 = 2550
                            Đáp số: 2550
Chúc bạn học tốt