Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)(1-1/2)xx(1-1/3)xx(1-1/4)xx(1-1/5)`
`=1/2xx2/3xx3/4xx4/5`
`=[1xx2xx3xx4]/[2xx3xx4xx5]`
`=1/5`
`b)(1-3/4)xx(1-3/7)xx(1-3/10)xx(1-3/13)xx .... xx(1-3/97)xx(1-3/100)`
`=1/4xx4/7xx7/10xx10/13xx .... xx94/97xx97/100`
`=[1xx4xx7xx10xx...xx94xx97]/[4xx7xx10xx13xx....xx97xx100]`
`=1/100`
a) \(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{97.99}\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{3}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{3}{2}.\left(\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{32}{99}\)
\(=\frac{16}{33}\)
b)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}\)
\(=\frac{102}{103}\)
#)Giải :
\(\left(1-\frac{3}{4}\right)x\left(1-\frac{3}{7}\right)x\left(1-\frac{3}{10}\right)x\left(1-\frac{1}{13}\right)x...x\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}x\frac{4}{7}x\frac{7}{10}x...x\frac{94}{97}x\frac{97}{100}\)
\(=\frac{1x4x7x...x94x100}{4x7x10x...x97x100}\)
\(=\frac{1}{100}\)
#~Will~be~Pens~#
\(\left(1-\frac{3}{4}\right)\left(1-\frac{3}{7}\right)\left(1-\frac{3}{10}\right)\left(1-\frac{1}{13}\right)...\left(1-\frac{1}{97}\right)\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1}{100}\)
( 1 - 3/4 ) x ( 1 - 3/7 ) x ( 1 - 3/10 ) x ( 1 - 3/13 ) x ......x ( 1 - 3/97 ) x ( 1 - 3/100 ) .
= 1/4 x 4/7 x 7/10 x ... x 97/100 .
Khử đi các số giống nhau .
= 1/100 nha bạn .
1 − 4 3 1 − 7 3 1 − (10 3 ... 1 − 97 3 1 − 100 3 = 4 1 . 7 4 . 10 7 ..... 97 94 . 100 97 = 4.7.10.....97.100 1.4.7.....94.97 = 100 1
\(\left(1-\frac{3}{4}\right)x\left(1-\frac{3}{7}\right)x\left(1-\frac{3}{10}\right)x\left(1-\frac{3}{13}\right)x...x\left(1-\frac{3}{97}\right)x\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}x\frac{4}{7}x\frac{7}{10}x\frac{10}{13}x...x\frac{94}{97}x\frac{97}{100}\)
\(=\frac{1}{100}\)
\(\left(1-\frac{3}{4}\right)\times\left(1-\frac{3}{7}\right)\times\left(1-\frac{3}{10}\right)...\times\left(1-\frac{3}{97}\right)\times\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}\times\frac{4}{7}\times\frac{7}{10}\times...\times\frac{94}{97}\times\frac{97}{100}\)
\(=\frac{1\times4\times7\times10\times...\times97}{1\times4\times7\times10\times...\times97\times100}\)
\(=\frac{1}{100}\)
a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)