Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Rightarrow\left(3x-4\right)^2-2^2\left(x+1\right)^2=0\)
\(\Rightarrow\left(3x-4\right)^2-\left(2x-2\right)^2=0\)
\(\Rightarrow\left(3x-4-2x+2\right)\left(3x-4+2x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{6}{5}\end{cases}}\)
Phân tích phương trình:
\(\frac{x^3+x^2-4\cdot x-4}{x^3+8\cdot x^2+17\cdot x+10}=\frac{x^2\cdot\left(x+1\right)-4\cdot\left(x+1\right)}{x^2\cdot\left(x+1\right)+7\cdot x\cdot\left(x+1\right)+10\cdot\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x^2-4\right)}{\left(x+1\right)\cdot\left(x^2+7\cdot x+10\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-2\right)}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+5\right)}=\frac{x-2}{x+5}\)
Vậy \(a=-2;b=5\)
\(\left(x-3\right)^2-\left(x^2-3x\right)=0\)
\(\left(x-3\right).\left(x-3\right)-x.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x-3-x\right)=0\)
\(\left(x-3\right).3=0\)
\(x-3=0=>x=3\)
Áp dụng bđt AM-GM ta có:
\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)
\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)
\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)
Cộng từng vế các đẳng thức trên ta được:
\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)
\(\Rightarrow N\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
x, y, z \(\ge\)0 là đúng đấy
và bạn có thể giải bằng BĐT Cauchy đc ko
2x^3 - 3x^2 + x + a x + 2 2x^3 - 3x^2 2x^2 - 7x + 15 2x^2 + 4x^2 -7x^2 + x -7x^2 - 14x 15x + a 15x + 30
Để \(2x^3-3x^2+x+a⋮\left(x+2\right)\) thì:
\(15x+a=15x+30\)
\(\Leftrightarrow a=30\)
2 | 3 | 1 | a | |
a=-2 | 2 | -7 | 15 | 0 |
vì phép chia trên là phép chia hết nên số dư cuối cùng bằng 0. Để dư bằng 0 thì a=30
(áp dụng lược đồ horner)
trả lời
8x^3-3x^2=0
<=> x^2(8x-3)=0
=> \(\orbr{\begin{cases}x=0\\x=\frac{3}{8}\end{cases}}\)
hok toots