Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi tử số là $T$
\(T=(1-\frac{1}{6})+(1-\frac{2}{7})+(1-\frac{3}{8})+....+(1-\frac{88}{93})\)
\(=\frac{5}{6}+\frac{5}{7}+\frac{5}{8}+....+\frac{5}{93}=5(\frac{1}{6}+\frac{1}{7}+...+\frac{1}{93})\)
Gọi mẫu số là $M$
\(M=\frac{-1}{2}(\frac{1}{6}+\frac{1}{7}+....+\frac{1}{93})\)
Do đó:
\(C=\frac{5(\frac{1}{6}+\frac{1}{7}+...+\frac{1}{93})}{\frac{-1}{2}(\frac{1}{6}+\frac{1}{7}+...+\frac{1}{93})}=\frac{5}{\frac{-1}{2}}=-10\)
Giải:
\(\dfrac{\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{2}{7}\right)+\left(1-\dfrac{3}{8}\right)+...+\left(1-\dfrac{88}{93}\right)}{\dfrac{-1}{12}-\dfrac{1}{14}-\dfrac{1}{16}-...-\dfrac{1}{186}}\)
Gọi dãy là A,phần tử là B. Ta có:
B=\(\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{2}{7}\right)+\left(1-\dfrac{3}{8}\right)+...+\left(1-\dfrac{88}{93}\right)\)
B=\(\dfrac{5}{6}+\dfrac{5}{7}+\dfrac{5}{8}+...+\dfrac{5}{93}\)
B=5.\(\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{93}\right)\)
B=5.\(\left[\dfrac{2}{2}.\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{93}\right)\right]\)
B=5.\(\left[2.\left(\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+...+\dfrac{1}{186}\right)\right]\)
B=10.\(\left(\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+...+\dfrac{1}{186}\right)\)
⇒A=\(\dfrac{10.\left(\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+...+\dfrac{1}{186}\right)}{\dfrac{-1}{12}+\dfrac{-1}{14}+\dfrac{-1}{16}+...+\dfrac{-1}{186}}\)
⇒A=-10
Chúc bạn học tốt!