K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

vào fx viết rõ đề

25 tháng 12 2016

câu 1

\(\frac{8}{7}x-\frac{10}{3}=-\frac{5}{21}\)

câu 2

x:27=-2:3,6

15 tháng 7 2021

a) 6x(5x + 3) + 3x(1 – 10x) = 7  

⇒ 30x2+18x+3x-30x2=7

⇒21x=7

⇒x=\(\dfrac{7}{21}\)

⇒x= \(\dfrac{1}{3}\)

 

15 tháng 7 2021

b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44

⇒15x-63x2-15+63x + 63x2-35x+36x-20=44

⇒79x-35=44

⇒79x=44+35

⇒79x=79

⇒x=1

22 tháng 4 2020

F= 21x- 24x+ 9x5 + 3x3 + 6x+ 2006 

  = 3x2( 7x6 - 8x4 + 3x3 + x +2) +2006 

  = 0 + 2006 

  = 0

22 tháng 4 2020

sorry cái kquả ban nãy mình viết nhầm

Kquả là 2006

AH
Akai Haruma
Giáo viên
2 tháng 7 2018

Lời giải:

\(A=x^2-5x+5\)

\(=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{5}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{5}{4}\)

\((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=(x-\frac{5}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}\)

Vậy \(A_{\min}=-\frac{5}{4}\). Dấu bằng xảy ra khi \(x=\frac{5}{2}\)

--------------

\(B=x^2-3x+1\)

\(=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2-\frac{5}{4}\)

\(=(x-\frac{3}{2})^2-\frac{5}{4}\)

\((x-\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0-\frac{5}{4}=-\frac{5}{4}\)

Vậy \(B_{\min}=\frac{-5}{4}\Leftrightarrow x=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
2 tháng 7 2018

\(C=3x^2-6x+8\)

\(=3(x^2-2x+1)+5\)

\(=3(x-1)^2+5\)

\((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 3.0+5=5\)

Do đó \(C_{\min}=5\Leftrightarrow x=1\)

----------------

\(D=7x^2+21x+3\)

\(=7[x^2+3x+(\frac{3}{2})^2]-\frac{51}{4}\)

\(=7[x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2]-\frac{51}{4}=7(x+\frac{3}{2})^2-\frac{51}{4}\)

\((x+\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 7.0-\frac{51}{4}=\frac{-51}{4}\)

Vậy \(D_{\min}=-\frac{51}{4}\Leftrightarrow x=\frac{-3}{2}\)

`G(x)+H(x)=(21x^2+1+17x)+(-2+6x^3-12x^2-8)`

`=21x^2+1+17x-2+6x^3-12x^2-8`

`= 6x^3+(21x^2-12x^2)+17x+(1-2-8)`

`= 6x^3+9x^2+17x-9`

`G(x)-H(x)=(21x^2+1+17x)-(-2+6x^3-12x^2-8)`

`= 21x^2+1+17x+2-6x^3+12x^2+8`

`= -6x^3+(21x^2+12x^2)+17x+(1+2+8)`

`= -6x^3+33x^2+17x+11`

`----`

`M(x)+N(x)=(7x^5 + 1 + 17x^4 - 2)+(6x^4 - 12x^2 - 23x^4 + x)`

`= 7x^5 + 1 + 17x^4 - 2+6x^4 - 12x^2 - 23x^4 + x`

`= 7x^5+(17x^4+6x^4-23x^4)-12x^2+x+(1-2)`

`= 7x^5-12x^2+x-1`

`M(x)-N(x)=(7x^5 + 1 + 17x^4 - 2)-(6x^4 - 12x^2 - 23x^4 + x)`

`= 7x^5 + 1 + 17x^4 - 2-6x^4 + 12x^2 + 23x^4 - x`

`= 7x^5+(17x^4-6x^4+23x^4)+12x^2-x+(1-2)`

`= 7x^5+34x^4+12x^2-x-1`

Mình đã trl rồi nha!

(https://hoc24.vn/cau-hoi/tinh-tong-avf-hieu-cac-da-thuc-saugx-21x2-1-17x-va-hx-2-6x3-12x2-8mx-7x5-1-17x4-2-va-nx-6x4-12x2-23x4-x.7858748287383)

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)