Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
F= 21x8 - 24x6 + 9x5 + 3x3 + 6x2 + 2006
= 3x2( 7x6 - 8x4 + 3x3 + x +2) +2006
= 0 + 2006
= 0
Lời giải:
\(A=x^2-5x+5\)
\(=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{5}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{5}{4}\)
Vì \((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=(x-\frac{5}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}\)
Vậy \(A_{\min}=-\frac{5}{4}\). Dấu bằng xảy ra khi \(x=\frac{5}{2}\)
--------------
\(B=x^2-3x+1\)
\(=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2-\frac{5}{4}\)
\(=(x-\frac{3}{2})^2-\frac{5}{4}\)
Vì \((x-\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0-\frac{5}{4}=-\frac{5}{4}\)
Vậy \(B_{\min}=\frac{-5}{4}\Leftrightarrow x=\frac{3}{2}\)
\(C=3x^2-6x+8\)
\(=3(x^2-2x+1)+5\)
\(=3(x-1)^2+5\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 3.0+5=5\)
Do đó \(C_{\min}=5\Leftrightarrow x=1\)
----------------
\(D=7x^2+21x+3\)
\(=7[x^2+3x+(\frac{3}{2})^2]-\frac{51}{4}\)
\(=7[x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2]-\frac{51}{4}=7(x+\frac{3}{2})^2-\frac{51}{4}\)
Vì \((x+\frac{3}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 7.0-\frac{51}{4}=\frac{-51}{4}\)
Vậy \(D_{\min}=-\frac{51}{4}\Leftrightarrow x=\frac{-3}{2}\)
`G(x)+H(x)=(21x^2+1+17x)+(-2+6x^3-12x^2-8)`
`=21x^2+1+17x-2+6x^3-12x^2-8`
`= 6x^3+(21x^2-12x^2)+17x+(1-2-8)`
`= 6x^3+9x^2+17x-9`
`G(x)-H(x)=(21x^2+1+17x)-(-2+6x^3-12x^2-8)`
`= 21x^2+1+17x+2-6x^3+12x^2+8`
`= -6x^3+(21x^2+12x^2)+17x+(1+2+8)`
`= -6x^3+33x^2+17x+11`
`----`
`M(x)+N(x)=(7x^5 + 1 + 17x^4 - 2)+(6x^4 - 12x^2 - 23x^4 + x)`
`= 7x^5 + 1 + 17x^4 - 2+6x^4 - 12x^2 - 23x^4 + x`
`= 7x^5+(17x^4+6x^4-23x^4)-12x^2+x+(1-2)`
`= 7x^5-12x^2+x-1`
`M(x)-N(x)=(7x^5 + 1 + 17x^4 - 2)-(6x^4 - 12x^2 - 23x^4 + x)`
`= 7x^5 + 1 + 17x^4 - 2-6x^4 + 12x^2 + 23x^4 - x`
`= 7x^5+(17x^4-6x^4+23x^4)+12x^2-x+(1-2)`
`= 7x^5+34x^4+12x^2-x-1`
Mình đã trl rồi nha!
(https://hoc24.vn/cau-hoi/tinh-tong-avf-hieu-cac-da-thuc-saugx-21x2-1-17x-va-hx-2-6x3-12x2-8mx-7x5-1-17x4-2-va-nx-6x4-12x2-23x4-x.7858748287383)
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
vào fx viết rõ đề
câu 1
\(\frac{8}{7}x-\frac{10}{3}=-\frac{5}{21}\)
câu 2
x:27=-2:3,6