Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)
\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)
\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)
Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
\(\left(x-1\right)^4+\left(5-x\right)^4=82\)
\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)
Đặt \(x-3=y\Rightarrow x=y+3\)
Thay \(x=y+3\)vào phương trình. Ta có:
\(\left(y+2\right)^4+\left(y-2\right)^4=82\)
\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)
\(\Leftrightarrow2y^4+48y^2+32=82\)
\(\Leftrightarrow2y^4+48y^2+32-82=0\)
\(\Leftrightarrow2y^4+48y^2-50=0\)
\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)
\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)
\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)
Nếu \(y=1\Rightarrow x=4\)
Nếu\(y=-1\Rightarrow x=2\)
Vậy x=4 hoặc x=2
tham khảo:
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
-Chúc mừng lên Thiếu tá he. Chắc tui còn lâu mới lên được á. Cộng thêm nick kia chắc có được 3 sao à.
\(\frac{2x+1}{89}+\frac{2x+4}{86}+\frac{2x+8}{82}+3=0\)
\(\frac{2x+1}{89}+1+\frac{2x+4}{86}+1+\frac{2x+8}{82}+1-3+3=0\)
\(\frac{2x+90}{89}+\frac{2x+90}{86}+\frac{2x+90}{82}=0\)
\(\left(2x+90\right)\left(\frac{1}{89}+\frac{1}{86}+\frac{1}{82}\right)=0\)
mà \(\frac{1}{89}+\frac{1}{86}+\frac{1}{82}\ne0\)
\(\Rightarrow2x+90=0\)
\(\Rightarrow2x=-90\)
\(\Rightarrow x=-45\)
Vậy \(x=-45\)
@Lam Ngo Tung dòng 2 công mỗi phân thức thêm 1 rồi trừ đi 3 sao cộng tiếp với 3 thế :v
Lời giải:
Đặt $x-1=a$ thì $x+1=a+2$ và $x-3=a-2$
PT trở thành: $(a+2)^4+(a-2)^4=82$
$\Leftrightarrow 2a^4+48a^2+32=82$
$\Leftrightarrow a^4+24a^2-25=0$
$\Leftrightarrow (a^2-1)(a^2+25)=0$
$\Rightarrow a^2-1=0$
$\Leftrightarrow (x-1)^2-1=0$
$\Leftrightarrow (x-2)x=0\Rightarrow x=0$ hoặc $x=2$
\(1,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\\ \Leftrightarrow\dfrac{4\left(3x+2\right)}{24}-\dfrac{6\left(3x-2\right)}{24}-\dfrac{45}{24}=0\\ \Leftrightarrow12x+24-18x+12-45=0\\ \Leftrightarrow-6x-9=0\\ \Leftrightarrow x=-\dfrac{3}{2}\)
2, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{x\left(3+x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{8x-6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6-3x-x^2-8x+6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow-2x^2-10x+12=0\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow\left(x-1\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
\(a,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\)
\(\Leftrightarrow4\left(3x+2\right)-6\left(3x-2\right)=45\)
\(\Leftrightarrow12x+8-18x+12=45\)
\(\Leftrightarrow12x-18x=45-12-8\)
\(\Leftrightarrow-6x=25\)
\(\Leftrightarrow x=\dfrac{-25}{6}\)
Vậy \(S=\left\{\dfrac{-25}{6}\right\}\)
\(b,\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\left(ĐKXĐ:x\ne3;x\ne-3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)-x\left(3+x\right)=8x-6\)
\(\Leftrightarrow3x-x^2+6-2x-3x-x^2=8x-6\)
\(\Leftrightarrow-x^2-x^2+3x-2x-3x-8x=-6+6\)
\(\Leftrightarrow-2x^2-10x=0\)
\(\Leftrightarrow-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;5\right\}\)
(x + 1)4 + (x - 3)4 = 82
\(\Leftrightarrow\) (x2 + 2x + 1)2 + (x2 - 6x + 9)2 = 82
\(\Leftrightarrow\) x4 + 4x2 + 1 + 4x3 + 4x + 2x2 + 4x2 + x4 + 36x2 + 81 - 12x3 - 108x + 18x2 - 82 = 0
\(\Leftrightarrow\) 2x4 - 8x3 + 60x2 - 104x = 0
\(\Leftrightarrow\) x4 - 4x3 + 30x2 - 52x = 0
\(\Leftrightarrow\) x(x3 - 4x2 + 30x - 52) = 0
\(\Leftrightarrow\) x(x3 - 2x2 - 2x2 + 4x + 26x - 52) = 0
\(\Leftrightarrow\) x[x2(x - 2) - 2x(x - 2) + 26(x - 2)] = 0
\(\Leftrightarrow\) x(x - 2)(x2 - 2x + 26) = 0
Ta có: x2 - 2x + 26 = x2 - 2x + 1 + 25 = (x - 1)2 + 25 > 0 với mọi x
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = {0; 2}
Chúc bn học tốt!
Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=82\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-6x+9\right)^2=82\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x+x^4+36x^2+81-12x^3+18x^2-108x-82=0\)
\(\Leftrightarrow2x^4-8x^3+60x^2-104x=0\)
\(\Leftrightarrow x\left(2x^3-8x^2+60x-104\right)=0\)
\(\Leftrightarrow x\left(2x^3-4x^2-4x^2+8x+52x-104\right)=0\)
\(\Leftrightarrow x\left[2x^2\left(x-2\right)-4x\left(x-2\right)+52\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(2x^2-4x+52\right)=0\)
mà \(2x^2-4x+52>0\forall x\)
nên x(x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: S={0;2}
9=32
81=34
=> Tập hợp các số đó là: 32;33;34 để bé hơn 82
=> n=2 hoặc n=3 hoặc n=4
8^2+8^2
=64+64
=128
654+456
=1110
9/3-4/3=5/3
#vhn#
#k_mk_nha
82+82=128
654+456=1110
9/3-4/3=5/3