Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^6+7^5-7^4\)
\(=7^4\cdot7^2+7^5\cdot7-7^4\)
\(=7^4\cdot\left(7^2+7-1\right)\)
\(=7^4\cdot55\)
\(=7^4\cdot5\cdot11⋮11\left(đpcm\right)\)
\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)\)
\(=7^4.55⋮11\)
\(=>7^6+7^5-7^4⋮11\)
\(a,7^6+7^5-7^4⋮55\)
\(7^4\left(7^2+7-1\right)⋮55\)
\(7^4\times55⋮55\left(dpcm\right)\)
\(8^{12}-2^{33}-2^{30}\)
\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)
\(=8^{12}-8^{11}-8^{10}\)
\(=8^{10}\left(8^2-8-1\right)\)
\(=8^{10}\times55⋮55\left(dpcm\right)\)
a) \(\dfrac{-1}{3}\cdot2\cdot\dfrac{-1}{3}=\left(\dfrac{-1}{3}\right)^2\cdot2=\dfrac{1}{9}\cdot2=\dfrac{2}{9}\)
c) \(\dfrac{8^4}{4^4}=\left(\dfrac{8}{4}\right)^4=2^4=16\)
d) \(\dfrac{90^3}{15^3}=\left(\dfrac{90}{15}\right)^3=6^3=216\)
a, \(10^9+10^8+10^7⋮222\)
Ta có:\(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)\)
\(=10^7.111=5^7.2^7.111=5^7.2^6.2.111=5^7.2^6.222\)
Vì 222\(⋮222\Rightarrow5^7.2^6.222⋮222\)
Vậy \(10^9+10^8+10^7⋮222\)
b) 817 - 279 - 913 ⋮ 45
\(\)Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)\)
\(=3^{26}.5=3^{24}.3^2.5=3^{24}.45\)
Vì \(45⋮45\Rightarrow3^{24}.45⋮45\)
Vậy \(81^7-27^9-9^{13}⋮45\)
CHÚC BẠN HỌC TỐT!!
a, \(B=\dfrac{10^{12}+1}{10^{12}+1}=1\)
+) Xét \(n>12\Rightarrow A>1=B\)
+) Xét \(n< 12\Rightarrow A< B=1\)
Vậy...
b, \(\overline{abc}-\overline{deg}⋮7\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{abc}⋮7\\\overline{deg}⋮7\end{matrix}\right.\)
Ta có: \(\overline{abcdeg}=1000\overline{abc}+\overline{deg}⋮7\) ( do \(\left(1000;7\right)=1\) )
\(\Rightarrowđpcm\)
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy n = 4
b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow n=3\)
Vậy n = 3