Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)
\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F
E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1
E=1+1/2019+1
E=2/2020
E=1/1010
F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1
F= 1+1/2019+1
F=2/2020
F=1/1010
từ đó ta có E=F(=1/1010)
bài 1:
ssh của A là:
(151-3):2+1=75
A=(151+3)x75:2=5775
đáp số: 5775
Ta có:
\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)
Ta xét 2 trường hợp:
\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)
\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)
\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)
\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)
\(Do:\)
\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)
\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
\(\Rightarrow A>B\)
a) 29^57 < 29^75
b) 1011^22 < 1101^22
c) ( 2021 + 2018 )^2019 < ( 2020 + 2019 )^2020
d) 2^5000 > 7^2000
Chúc bạn học tốt @!!!
Nếu có thể thì t.i.c.k cho mình nha ! Thank
ta có 7^2020=7.7^2019
vì 7<8
=>7^2020<8.7^2019
k nhé mọi người
Trả lời
72020 và 8.72019
8.72019=>(1+7).72019
=1.72019+7.72019
=>72019+72020
Vậy:72020 < 72019+72020
Hay:72020 < 8.72019