Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thôi năn nỉ thôi tớ giúp XD
\(\text{Bổ sung cho 2 đề là: x,y là các số tự nhiên}\)
\(49.x+11y=224\Rightarrow x< 5\)
\(+,x=0\Rightarrow11y=224\left(loại\right)\)
\(+,x=1\Rightarrow11y=175\left(\text{loại}\right)\)
\(+,x=2\Rightarrow11y=126\left(\text{loại}\right)\)
\(+,x=3\Rightarrow11y=77\Rightarrow y=7\left(\text{thỏa mãn}\right)\)
\(+,x=4\Rightarrow11y=28\left(\text{loại}\right)\)
\(\text{Vậy: x=3;y=7}\)
a) \(\left(\left(\frac{-12}{16}\right)+\frac{7}{14}\right)-\left(\frac{1}{13}-\frac{3}{13}\right)\) \(=\left(\left(\frac{-3}{4}\right)+\frac{1}{2}\right)-\left(\frac{-2}{13}\right)\) \(=\left(\frac{-2}{8}\right)-\left(\frac{-2}{13}\right)\) \(=\left(\frac{-10}{104}\right)\) \(=\left(\frac{-5}{72}\right)\) | b) \(\frac{10}{11}+\frac{4}{11}:4-\frac{1}{8}\) \(=\frac{10}{11}+\frac{4}{11}:\frac{4}{1}-\frac{1}{8}\) \(=\frac{10}{11}+\frac{4}{11}\cdot\frac{1}{4}-\frac{1}{8}\) \(=\frac{10}{11}+\frac{1}{11}-\frac{1}{8}\) \(=\frac{11}{11}-\frac{1}{8}\) \(=1-\frac{1}{8}\) \(=\frac{7}{8}\) |
HT
=`123456789009895436891619370390615895`96312836092419643527671493963894583594783285675 NHA BẠN!?~~~~~~
\(-x-\frac{3}{4}=-\frac{8}{11}=>-x=-\frac{8}{11}+\frac{3}{4}=\frac{1}{44}=>x=-\frac{1}{44}\)
Câu 2:
\(a,\Rightarrow x=-23+15=-8\\ b,\Rightarrow5\left(x+4\right)=85\\ \Rightarrow x+4=17\Rightarrow x=13\\ c,\Rightarrow5^{x+2}=24+1=25=5^2\\ \Rightarrow x+2=2\Rightarrow x=0\\ d,\Rightarrow x+4+x+5⋮9\\ \Rightarrow2x+9⋮9\\ \Rightarrow2x⋮9\Rightarrow x\in\left\{0;9\right\}\left(0< x< 10\right)\)
A=1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/2-1/9
Câu B tương tự nha bạn :333
\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}-\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{115}{-161}=-\dfrac{115}{161}\)
bạn đã kiểm tra kĩ chưa vậy?mình đọc đề câu B mà loạn não luôn á;-;
\(A = (\frac{1}{10} + ...+ \frac{1}{19} ) + (\frac{1}{20} + ...+ \frac{1}{29}) + (\frac{1}{30} +...+ \frac{1}{39} ) + (\frac{1}{40} + ...+\frac{1}{49} ) + (\frac{1}{50} +....+ \frac{1}{59}) + (\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}\)
Ta có : mỗi bên có 10 số hạng
\( (\frac{1}{10} + ..+ \frac{1}{19}) < (\frac{1}{10} + ...+ \frac{1}{10}) = \frac{1}{1}\)
\(\frac{1}{20}+..+ \frac{1}{29} < (\frac{1}{20}+..+\frac{1}{20}) = \frac{1}{2}\)
\((\frac{1}{30} +...+ \frac{1}{39} )< (\frac{1}{30} +...+ \frac{1}{30}) = \frac{1}{3}\)
\((\frac{1}{40} + ...+\frac{1}{49} )< (\frac{1}{40} + ...+\frac{1}{40}) = \frac{1}{4}\)
\((\frac{1}{50} +....+ \frac{1}{59})< (\frac{1}{50} +....+ \frac{1}{50}) = \frac{1}{5}\)
\((\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}< (\frac{1}{60} + ....+\frac{1}{60})+ \frac{1}{70} = \frac{1}{6} +\frac{1}{70}\)
\(\implies A < 1+\frac{1}{2} + ...+ \frac{1}{6} + \frac{1}{70}= \frac{13}{15} + \frac{1}{70} <1<\frac {51}{20} \)
\(\implies A<\frac{51}{20}\) \((đpcm)\)
70 - 11.[(52.3 - 11) : 12 - 2] = 70 - 11.[(25.3 - 11) : 12 - 2] = 70 - 11.[(75 - 11) : 12 - 2] = 70 - 11.[64 : 12 - 2] = 70 - 11.[64/12 - 12/6] = 70 - 11.[32/6 - 12/6] = 70 - 11.[20/6] = 70 - 11.[10/3] = 210/3 - 110/3 = 100/3. HT