Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ
Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN
Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .
Có sai đâu nhỉ?
Dòng 2 từ trên xuống hình thứ nhất bạn nhân module \(3i\) vào 2 vế, khi đó vế phải là 12, còn vế trái:
\(\left|3i.iz_2-3i.1+3i.2i\right|=\left|-3iz_2-3i-6\right|=\left|\left(-3iz_2\right)-6-3i\right|\)
Dòng 2 từ dưới đếm lên hình 2:
\(I_1\left(-6;-10\right)\) ; \(I_2\left(6;3\right)\Rightarrow\overrightarrow{I_1I_2}=\left(12;13\right)\Rightarrow I_1I_2=\sqrt{12^2+13^2}\)
Một công thức tính độ dài vecto rất cơ bản
\(\int\left(\dfrac{7}{cos^2x}+cosx-3^x+2\right)dx=7tanx+sinx-\dfrac{3^x}{ln3}+2x+C\)
Em có bài này muốn hỏi mọi người ạ, em đã cô lập được logy(x) nhưng tìm max min 2 ẩn vẫn khó quá :(.
Đề bài liệu có chính xác không nhỉ? Mình chỉ có thể tìm được max bằng \(2\sqrt{2}\) (xảy ra khi \(lnx=\sqrt{2}\) và \(lny=\dfrac{1}{2}\)) và ko thể tìm được min.
À rồi OK, suy nghĩ hơi cồng kềnh 1 xíu nên hướng tìm min bị sai:
Giả thiết tương đương: \(y^{\sqrt{4-ln^2x}}=x^{1-lny}\)
\(\Rightarrow\sqrt{4-ln^2x}.lny=\left(1-lny\right)lnx\) (1)
Do \(y\ne1\Rightarrow lny\ne0\)
Nên (1) tương đương: \(\sqrt{4-ln^2x}=\left(\dfrac{1-lny}{lny}\right)lnx\) (2)
Đặt \(\left\{{}\begin{matrix}lnx=a\\lny=b\end{matrix}\right.\) thì \(log_yx=\dfrac{a}{b}\)
(2) trở thành: \(\sqrt{4-a^2}=\left(\dfrac{1-b}{b}\right)a\)
\(\Rightarrow\sqrt{4-a^2}=\dfrac{a}{b}-a\Rightarrow\dfrac{a}{b}=\sqrt{4-a^2}+a\)
Xét hàm \(f\left(a\right)=\sqrt{4-a^2}+a\) trên \(\left[-2;2\right]\)
\(f'\left(a\right)=1-\dfrac{a}{\sqrt{4-a^2}}=0\Rightarrow a=\sqrt{2}\)
\(f\left(-2\right)=-2\) ; \(f\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(f\left(2\right)=2\)
\(\Rightarrow f\left(a\right)_{min}=-2\) ; \(f\left(a\right)_{max}=2\sqrt{2}\)
Đáp án B
\(\dfrac{d}{dx}\left(f\left(x\right)\right)\equiv f'\left(x\right)\)
\(\dfrac{1}{sinx}dx=\dfrac{sinx}{sin^2x}dx=\dfrac{sinx}{1-cos^2x}dx=\dfrac{d\left(cosx\right)}{cos^2x-1}\)
Câu 69:
Ta có:
\(f(x)+f(y)=1\Leftrightarrow \frac{9^x}{9^x+m^2}+\frac{9^y}{9^y+m^2}=1\)
\(\Leftrightarrow \frac{9^x}{9^x+m^2}=1-\frac{9^y}{9^y+m^2}=\frac{m^2}{9^y+m^2}\)
\(\Leftrightarrow 9^{x+y}=m^4\Leftrightarrow (3^{x+y}-m^2)(3^{x+y}+m^2)=0\)
\(\Rightarrow 3^{x+y}=m^2\) (do \(3^{x+y}>0; m^2\geq 0\Rightarrow 3^{x+y}+m^2>0\) ) (1)
------------------------------------------------
Tiếp theo: \(e^{x+y}\leq e(x+y)\Leftrightarrow e^{x+y-1}\leq x+y\)
Đặt \(x+y=k\Rightarrow e^{k-1}\leq k\Leftrightarrow e^{k-1}-k\leq 0\)
Đặt \(e^{k-1}-k=f(k)\Rightarrow f(k)\leq 0(*)\)
Có: \(f'(k)=e^{k-1}-1=0\Leftrightarrow k=1\)
Lập bảng biến thiên ta thấy rằng \(f(k)_{\min}=f(1)=0\) hay \(f(k)\geq 0(**)\)
Từ \((1);(2)\Rightarrow f(k)=0\) hay \(k=1\Leftrightarrow x+y=1\)
Thay vào (1) ta có \(m^2=3\Leftrightarrow m=\pm \sqrt{3}\)
Vậy có 2 giá trị m thỏa mãn. đáp án D
Câu 70:
Để hai pt lần lượt có hai nghiệm phân biệt thì
\(\Delta _1=\Delta_2=b^2-20a>0\Leftrightarrow b^2> 20a\) (1)
Khi đó, áp dụng hệ thức Viete ta có:
Đối với PT 1: \(\ln x_1+\ln x_2=\frac{-b}{a}\Leftrightarrow \ln (x_1x_2)=\frac{-b}{a}\)
\(\Leftrightarrow x_1x_2=e^{\frac{-b}{a}}\)
Đối với PT 2: \(\log x_1+\log x_2=\frac{-b}{5}\Leftrightarrow \log (x_1x_2)=\frac{-b}{5}\)
\(\Leftrightarrow x_3x_4=10^{\frac{-b}{5}}\)
Vì \(x_1x_2> x_3x_4\Leftrightarrow e^{\frac{-b}{a}}>10^{\frac{-b}{5}}\)
\(\Leftrightarrow 10^{\frac{-b}{a\ln 10}}> 10^{\frac{-b}{5}}\)
\(\Leftrightarrow \frac{-b}{a\ln 10}>\frac{-b}{5}\Leftrightarrow a>\frac{5}{\ln 10}\)
\(\Leftrightarrow a> 2,71...\Rightarrow a\geq 3\) (vì a nguyên dương)
Theo (1) ta có: \(b^2>20a\geq 60\Rightarrow b\geq 8\) (do b nguyên dương)
Vậy \(2a+3b\geq 2.3+3.8\Leftrightarrow 2a+3b\geq 30\)
Đáp án A
3.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
B đúng
4.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)
A đúng
1.
B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)
Câu 55)
Ta có tọa độ các điểm là:\(M(1,5),N(3,-1),P(6,0)\)
\(\Rightarrow MN=2\sqrt{10};MP=5\sqrt{2};NP=\sqrt{10}\)
Nhận thấy \(MN^2+NP^2=MP^2\) nên tam giác tạo bởi ba điểm là tam giác vuông.
Đáp án C
Câu 56)
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Khi đó
\(|z+2-3i|=|\overline{z}-4+i|\Leftrightarrow |(a+2)+i(b-3)|=|(a-4)+i(1-b)|\)
\(\Leftrightarrow (a+2)^2+(b-3)^2=(a-4)^2+(b-1)^2\)
\(\Leftrightarrow 3a-b-1=0\)
Đáp án A
Câu 57:
Câu này thử thôi:
Biết tọa độ \(A(1,3),B(-2,2),C(-4,-2),D(1,-7),M(-3,4),N(1,-3),P(-3,2)\)
Tọa độ trọng tâm:
\(G(ABC)=\left(\frac{1-2-4}{3},\frac{3+2-2}{3}\right)=(\frac{-5}{3},1)=\left(\frac{-3+1-3}{3},\frac{4-3+2}{3}\right)=G(MNP)\)
nên A đúng
Nhìn trên mp tọa độ thì C đúng
Tính được độ dài các cạnh \(AB,MN,BC,NP\)
Tam giác $ABC$ và $MNP$ đồng dạng thì \(\frac{AB}{MN}=\frac{BC}{NP}\). Dựa vào độ dài vừa tính ta suy ra \(\frac{AB}{MN}\neq \frac{BC}{NP}\)
nên đáp án B sai