Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=4y\Rightarrow\frac{x}{4}=\frac{y}{5}\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow x=4k;y=5k\)
\(\Rightarrow4k.5k=6\Rightarrow k^2=\frac{6}{20}=\frac{3}{10}\)
\(\Rightarrow k=\hept{\begin{cases}\sqrt{\frac{3}{10}}\\-\sqrt{\frac{3}{10}}\end{cases}}\)
Thay vào để tìm x ; y
\(5x=4y\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{x.y}{4.5}=\frac{6}{20}=\)\(\frac{3}{10}\)\(\Rightarrow5x=\frac{3}{10}\Rightarrow x=\frac{3}{50}\)
\(\Rightarrow4y=\frac{3}{10}\Rightarrow y=\frac{3}{40}\)
Chúc bạn hok tốt
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)
Từ \(7x=4y\)\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\left(k\ne0\right)\)
\(\Rightarrow x=4k;y=7k\)
\(\Rightarrow xy=4k.7k=28k^2=112\)
\(\Rightarrow k^2=4\)\(\Rightarrow k=\pm2\)
\(TH1:k=-2\)\(\Rightarrow x=-8;y=-14\)
\(TH2:k=2\)\(\Rightarrow x=8;y=14\)
Vậy các cặp \(\left(x;y\right)\)thoả mãn là: \(\left(-8;-14\right),\left(8;14\right)\)
Ta có 7x - 4y = 0 => 7x = 4y => x/4 = y/7
xy - 252 = 0 => xy = 252
Đặt x/4 = y/7 = k
Ta có x/4 = k => x = 4k
y/7 = k => y = 7k
Thế vào xy = 252 ta có
4k7k = 252
28k2 = 252
k2 = 252:28 = 9
=> k = +3
=> x = +12; y = +21
Mình ko chắc chắn lắm đâu nhé
sao b ko tính luôn đặt làm gì chứ
y=(7/4)x->(7/4)x2=252->x2=144->x=12 và -12 thế là suy ra y=21 và -21 thôi
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$