K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

(5a - 3b)(5a + 3b) = 25a2 - 9b2

23 tháng 7 2018

(5a - 3b)(5a + 3b) = 25a2 - 9b2

24 tháng 7 2017

Ta có (5a-3b).(5a+3b) = \(\left(5a\right)^2-\left(3b\right)^2=25a^2-9b^2\)

2 tháng 8 2016

VT := [(5a - 3b) + 8c][(5a - 3b) - 8c] 
= (5a - 3b)^2 - 64c^2 (theo hiệu hai bình phương) 
= 25a^2 - 30ab + 9b^2 - 64c^2 (theo bình phương của hiệu) 
= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2) (vì 4c^2 = a^2 - b^2) 
= 9a^2 - 30ab + 25b^2 
= (3a - 5b)^2 (theo bình phương của hiệu).

18 tháng 7 2018

bài này hơi khó bạn ơi, mk mới 6 lên 7 nên ko rõ

18 tháng 7 2018

Ta có : \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(5a-3b\right)^2-16c^2\)

Mà theo đề \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)

nên \(\left(5a-3b\right)^2-16c^2=\left(3a-5b\right)^2\)

\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=16c^2\)

\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=16c^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16c^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=c^2\Leftrightarrow a^2-b^2=c^2\)

\(\Rightarrow a^2=b^2+c^2\) nên \(a;b;c\) là độ dài 3 cạnh tam giác vuông theo Pytago đảo

30 tháng 6 2018

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=25a^2-30ab+9b^2-16c^2\)

\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16c^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\)

6 tháng 8 2020

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

\(\Leftrightarrow\left(5a-3b\right)^2-64c^2-\left(3a-5b\right)^2=0\)

\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=64c^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16\left(a^2-b^2\right)\)

\(\Leftrightarrow16\left(a^2-b^2\right)=16\left(a^2-b^2\right)\left(true\right)\)

Vậy \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)khi \(a^2-b^2=4c^2\)

6 tháng 8 2020

(5a-3b+8c)(5a-3b-8c)

=(5a-3b)2-(8c)2

=(5a-3b)2-16.4c2

Thay a2-b2=4c2 ta có :

=25a2-30ab+9b2-16(a2-b2)

=25a2-30ab+9b2-16a2+16b2

=9a2-30ab+25b2

=(3a-5b)2(dpcm)

          
15 tháng 8 2017

Ta có:

\(VT=(5a-3b+8c).(5a-3b-8c)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(a^2-b^2=4c^2\) nên:

\(VT=25^2-30ab+9b^2-16.\left(a^2-b^2\right)\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2=VP\)

\(\Rightarrow\) Đpcm.

15 tháng 8 2017

thanhks

4 tháng 10 2018

Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=\left(5a-3b\right)^2-64c^2\)

\(=\left(5a-3b\right)^2-16.4c^2\)

\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)

\(=25a^2-30ab+9b^2-16a^2+16b^2\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\left(đpcm\right)\)