Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
4: \(\left|x^3-64\right|+\left|15-4y\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-64=0\\15-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{15}{4}\end{matrix}\right.\)
6: |7x-11|>5
=>7x-11>5 hoặc 7x-11<-5
=>7x>16 hoặc 7x<6
=>x>16/7 hoặc x<6/7
8: |2x+12|<4
=>2x+12>-4 và 2x+12<4
=>2x>-16 và 2x<-8
=>-8<x<-4
a) \(3x^2-10x+7\)
\(=3\left(x^2-\frac{10}{3}x+\frac{7}{3}\right)\)
\(=3\left(x^2-\frac{10}{3}x+\frac{25}{9}-\frac{4}{9}\right)\)
\(=3\left[\left(x-\frac{5}{3}\right)^2-\frac{4}{9}\right]\)
\(=3\left[\left(x-\frac{5}{3}\right)^2\right]-\frac{4}{3}\ge\frac{-4}{3}>0\)
b) \(4x^2+9x+5\)
\(=4x^2+9x+\frac{81}{16}-\frac{1}{16}\)
\(=\left(2x+\frac{9}{4}\right)^2-\frac{1}{16}\ge\frac{-1}{16}>0\)
a. \(3x^2-10x+7\)
\(=3\left(x^2-\dfrac{10}{3}x+\dfrac{7}{3}\right)\)
\(=3\left(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{4}{9}\right)\)
\(=3\left(x-\dfrac{5}{3}\right)^2-\dfrac{4}{3}\le\dfrac{4}{3}\)
=> đpcm
b. \(4x^2-9x+5\)
\(=\left(2x\right)^2-2.2x.\dfrac{9}{4}+\dfrac{81}{16}-\dfrac{1}{16}\)
\(=\left(2x-\dfrac{9}{4}\right)^2-\dfrac{1}{16}\le\dfrac{1}{16}\forall x\)
=> đpcm
bạn ơi hình như sai ý
câu a là bé hơn hoặc = 0
câu b là lớn hơn hoặc = 0
bạn giải rõ hơn đc ko
=>1-3x= x-7 hoặc 1-3x=-x+7
=>1+7=4x hoặc 1-7=2x
=>x=2 hoặc x=-3
a: |3x-1|<=5
=>3x-1>=-5 và 3x-1<=5
=>x>=-4/3 và x<=2
b: \(\left(x^2-2\right)\left(16-x^2\right)>=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2-16\right)< =0\)
\(\Leftrightarrow2< =x^2< =16\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}< =x< =4\\-\sqrt{2}>=x>=-4\end{matrix}\right.\)