Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để giải phương trình 7/4 - (x + 5/3) = -12/5, ta sẽ thực hiện các bước sau:
Đưa các số học về cùng một mẫu số:
7/4 - (x + 5/3) = -12/5
=> 7/4 - (3x/3 + 5/3) = -12/5
=> 7/4 - (3x + 5)/3 = -12/5
Tìm mẫu số chung của các phân số:
Mẫu số chung của 4 và 3 là 12.
Nhân tử số và mẫu để đưa các phân số về cùng mẫu số:
(73)/(43) - ((3x + 5)4)/(34) = (-1212)/(512)
=> 21/12 - (12x + 20)/12 = -144/60
Rút gọn các phân số:
21/12 - (12x + 20)/12 = -144/60
=> 7/4 - (4x + 20)/4 = -12/5
Loại bỏ mẫu số:
7 - (4x + 20) = -48/5
=> 7 - 4x - 20 = -48/5
Giải phương trình:
-4x - 13 = -48/5
Đưa phương trình về dạng tổng quát:
-4x = -48/5 + 13
=> -4x = -48/5 + 65/5
=> -4x = 17/5
Tính giá trị của x:
x = (17/5) / -4
=> x = 17/5 * (-1/4)
=> x = -17/20
Vậy, giá trị của x là -17/20.
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Ta có :
\(\frac{x-3}{97}+\frac{x-27}{73}+\frac{x-67}{33}+\frac{x-73}{27}=4\)
\(\Leftrightarrow\left(\frac{x-3}{97}-1\right)+\left(\frac{x-27}{73}-1\right)+\left(\frac{x-67}{33}-1\right)+\left(\frac{x-73}{27}-1\right)=0\)
\(\Leftrightarrow\frac{x-100}{97}+\frac{x-100}{73}+\frac{x-100}{33}+\frac{x-100}{27}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}>0\) Nên \(x-100=0\)
\(\Leftrightarrow x=100\)
Vậy \(x=100\)
\(\Leftrightarrow\frac{x-3}{87}+\frac{x-27}{79}+\frac{x-67}{33}+\frac{x-73}{27}-4=0\)
\(\Leftrightarrow\left(\frac{x-3}{97}-1\right)+\left(\frac{x-27}{73}-1\right)+\left(\frac{x-67}{33}-1\right)+\left(\frac{x-73}{27}-1\right)=0\)
\(\Leftrightarrow\left(\frac{x-3-97}{97}\right)+\left(\frac{x-27-73}{73}\right)+\left(\frac{x-67-33}{33}\right)+\left(\frac{x-73-27}{27}\right)=0\)
\(\Leftrightarrow\frac{x-100}{97}+\frac{x-100}{73}+\frac{x-100}{33}+\frac{x-100}{27}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\ne0\)
\(\Rightarrow x-100=0\Leftrightarrow x=100\)
a) \(\frac{1}{7}+\frac{6}{7}:\frac{3}{7}\)
\(=\frac{1}{7}+\frac{6}{7}.\frac{7}{3}\) (nhân nghịch đảo)
\(=\frac{1}{7}+2\)
\(=\frac{15}{7}\)
b) \(\frac{4}{5}-\frac{1}{5}.\left(-3\right)\)
\(=\frac{4}{5}-\left(-\frac{3}{5}\right)\)
\(=\frac{7}{5}\)
c) \(\frac{3}{7}+\left(\frac{-5}{2}\right)-\left(-\frac{3}{5}\right)\)
\(=\frac{3}{7}-\left(-\frac{5}{2}\right)+\frac{3}{5}\)
\(=\frac{30}{70}+\frac{175}{70}+\frac{42}{70}\)
\(=\frac{30+175+42}{70}\)
\(=\frac{247}{70}\)
d) viết lại đề hộ mình nhé
Bài làm:
1) \(\frac{3}{5}\div\frac{2x}{15}=\frac{1}{2}\div\frac{4}{5}\)
\(\Leftrightarrow\frac{9}{2x}=\frac{5}{8}\)
\(\Rightarrow10x=72\)
\(\Leftrightarrow x=\frac{36}{5}\)
2) \(-\frac{4}{2,5}\div\frac{3}{5}=\frac{1}{5}\div x\)
\(\Leftrightarrow\frac{1}{5}\div x=-\frac{8}{3}\)
\(\Rightarrow x=-\frac{3}{40}\)
3) \(0,12\div3=2x\div\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{25}=\frac{10}{3}x\)
\(\Rightarrow x=\frac{3}{250}\)
\(\frac{x-4}{-5}=\frac{1-2x}{3}\)
Nhân cả 2 vế với 15 ,ta được:
\(\frac{15.\left(x-4\right)}{-5}=\frac{15.\left(1-2x\right)}{3}\)
\(\Leftrightarrow\left(-3\right).\left(x-4\right)=5.\left(1-2x\right)\)
\(\Leftrightarrow-3x+12=5-10x\)
\(\Leftrightarrow-3x+10x=5-12\)
\(\Leftrightarrow7x=-7\)
\(\Leftrightarrow x=-1\)
Vậy x=-1
(𝑥−4)/−5=(1−2𝑥)/3
−15⋅𝑥−4−5=−15⋅−2𝑥+13
−15⋅𝑥−4−5=−15⋅−2𝑥+13
3(𝑥−4)=−5(−2𝑥+1)
3(x-4)=-5(-2x+1)
3(𝑥−4)=−5(−2𝑥+1)
3𝑥−12=−5(−2𝑥+1)
3𝑥−12=−5(−2𝑥+1)
3𝑥−12=10𝑥−5
𝑥 = -1
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
+) \(\frac{x}{10}=-7\Rightarrow x=-70\)
+) \(\frac{y}{15}=-7\Rightarrow y=-105\)
+) \(\frac{z}{12}=-7\Rightarrow z=-84\)
Vậy...
Cách 1:
\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng Tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\begin{cases}\frac{x}{10}=-7\Rightarrow x=-70\\\frac{y}{15}=-7\Rightarrow y=-105\\\frac{z}{12}=-7\Rightarrow z=-84\end{cases}\)
\(\dfrac{-5}{4}+x:\dfrac{12}{3}=\dfrac{-4}{3}\)
\(x:\dfrac{12}{3}=\dfrac{-4}{3}+\dfrac{5}{4}\)
\(x:4=\dfrac{-1}{12}\)
\(x=\dfrac{-1}{3}\)