K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

=>2x^2-4x+3x-6=6x-3x^2+10-5x

=>2x^2-x-6=-3x^2+x+10

=>5x^2-2x-16=0

=>x=2; x=-8/5

\(\left|\frac{x}{-4}\right|=\left|\frac{-5}{20}\right|\)

14 tháng 2 2019

\(\left|\frac{x}{-4}\right|=\left|\frac{-5}{20}\right|\)

P/S : Hông chắc :>

19 tháng 4 2019

a2+ b2+c2+2ab+2bc+2ac

13 tháng 11 2021

\(3x+2\left(5-x\right)=0\\ \Rightarrow3x+\left(10-2x\right)=0\\ \Rightarrow3x+10-2x=0\\ \Rightarrow\left(3x-2x\right)+10=0\\ \Rightarrow x+10=0\\ \Rightarrow x=-10\)

\(\dfrac{x}{y}\) là phân thức đại số, không phải đơn thức hay là đa thức.

3 tháng 1 2021

giúp mik vs ạ

3 tháng 1 2021

câu 1 phải ko bạn

 

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

i: \(=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)

8 tháng 12 2021

Bài 1:

\(i,\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}-\dfrac{x+2}{5-x}=\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=\dfrac{3\left(x-5\right)}{x-5}=3\)

\(j,\dfrac{3x\left(x-2\right)}{3x-2}+\dfrac{6x^2}{3x-2}-\dfrac{2\left(2-3x\right)}{2-3x}=\dfrac{3x^2-6x}{3x-2}+\dfrac{6x^2}{3x-2}+\dfrac{4-6x}{3x-2}=\dfrac{3x^2-6x+6x^2+4-6x}{3x-2}=\dfrac{9x^2-12x+4}{3x-2}=\dfrac{\left(3x-2\right)^2}{3x-2}=3x-2\)

\(n,\dfrac{2}{x}+\dfrac{3}{x-1}+\dfrac{1-4x}{x^2-x}=\dfrac{2\left(x-1\right)+3x+1-4x}{x\left(x-1\right)}=\dfrac{2x-2+3x+1-4x}{x\left(x-1\right)}=\dfrac{x-1}{x\left(x-1\right)}=\dfrac{1}{x}\)

Bài 2:

\(j,\dfrac{2}{3x}-\dfrac{1}{2x-2}-\dfrac{x-4}{6x-6x^2}=\dfrac{4\left(x-1\right)}{6x\left(x-1\right)}-\dfrac{3x}{6x\left(x-1\right)}-\dfrac{x-4}{6x\left(1-x\right)}=\dfrac{4x-4-3x+x-4}{6x\left(x-1\right)}=\dfrac{2x-8}{6x\left(x-1\right)}=\dfrac{2\left(x-4\right)}{6x\left(x-1\right)}=\dfrac{x-4}{3x\left(x-1\right)}\)

13 tháng 8 2020

\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)

Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

13 tháng 8 2020

=>   \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)

=>   \(-Q=\left(x^2+x\right)^2-25\)

Có:   \(\left(x^2+x\right)^2\ge0\forall x\)

=>   \(-Q\ge-25\forall x\)

=>     \(Q\le25\)

DẤU "=" XẢY RA <=>   \(\left(x^2+x\right)^2=0\)

<=>   \(x^2+x=0\)

<=>   \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

VẬY Q MAX = 25 <=>    \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)