Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-1<2/2010-3 nên A<B
Chúc bạn học tốt!
Lời giải:
$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$
$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$
Vì $20^{10}-1> 20^{10}-3$
$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$
$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$
$\Rightarrow A< B$
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
\(\dfrac{2}{20^{10}-1}>\dfrac{2}{20^{10}-3}\Leftrightarrow A>B\)
a) (x - 3)(y - 3) = 9 = 1.9 = 3.3
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0 | 12 | -3 |
y | 12 | -6 | 6 | 0 | 4 | 2 |
Vậy ...
b) A = \(\frac{10^{19}+1}{10^{20}+1}\) => 10A = \(\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
B = \(\frac{10^{20}+1}{10^{21}+1}\) => 10B = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Do \(10^{20}+1< 10^{21}+1\) => \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\) => 10A > 10B => A > B
Chứng minh nếu a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Do a/b < 1 => a < b
=> am < bm
=> am + ab < bm + ab
=> a.(b+m) < b.(a+m)
=> a/b < a+m/b+m
Áp dụng điều trên ta có: B = 1020 + 1/ 1021 + 1 < 1
=> B < 1020 + 1 + 9/1021 + 1 + 9
=> B < 1020 + 10/1021 + 10
=> B < 10.(1019 + 1)/10.(1020 + 1)
=> B < 1019+1/1020+1 = A
=> B < A
b) n + 1 chia hết cho n - 2
=> n - 2 + 3 chia hết cho n - 2
Do n - 2 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc { 1 ; -1 ; 3 ; -3}
=> n thuộc { 3 ; 1 ; 5 ; -1}
Vậy n thuộc { 3 ; 1 ; 5 ; -1}
Do \(B=\frac{10^{20}+1}{10^{21}+1}\)<1
\(\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}\)<\(\frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
\(\Rightarrow\)B<A hay A<B
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)
\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)
\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)
B=\(\dfrac{10^{20}+1}{10^{21}+1}< \dfrac{10^{20}+1+9}{10^{21}+1+9}=\dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}=A\)
=> B<A