K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

1. Ta có : 3x+12=0 <=> x= -4

bảng xét dấu:

x -∞ -4 + ∞
3x+12

- 0 +

f(x) >0 ∀ x ∈ (-4;+∞)

f(x) <0 ∀ x∈ (-∞;-4)

2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)

Bảng xét dấu:

x -∞ 9/5 +∞
-5x+9 + 0 -

f(x) >0 ∀ x ∈ (-∞; 9/5)

f(x) <0 ∀ x ∈(9/5; +∞)

3. Ta có : -3x-9=0 <=> x= -3

x -∞ -3 +∞
-3x-9 + 0 -

f(x) >0 ∀ x∈ (-∞; -3)

f(x) <0 ∀x∈ ( -3; +∞ )

4. Ta có : x (2x+4)=0

+, x=0

+, 2x+4=0 <=> x= -2

x -∞ -2 0 +∞
x - \(|\) - 0 +
2x+4 - 0 + \(|\) +
f (x) + 0 - 0 +

f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)

f(x) <0 ∀ x ∈ (-2;0)

5. Ta có: (x-2)(-x+4)=0

+, x-2=0 <=> x=2

+, -x+4=0 <=> x= 4

x -∞ 2 4 +∞
x-2 - 0 + \(|\) +
-x+4 + \(|\) + 0 -
f(x) - 0 + 0 -

f(x) >0 ∀ x ∈ (2;4)

f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)

6. Ta có : (-4x+3)(x-6)=0

+, -4x+3=0 <=>x= \(\frac{3}{4}\)

+, x-6 =0 <=> x=6

x -∞ 3/4 6 +∞
-4x+3 + 0 - \(|\) -
x-6 - \(|\) - 0 +
f(x) - 0 + 0 -

f(x) >0 ∀ x∈ (3/4;6)

f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)

21 tháng 1 2022

Nhận thất 2 vế của BĐT đều dương nên bình phương lên 

\(\Leftrightarrow3x^2-9x+1>x^2+4x+4\)

\(\Leftrightarrow2x^2-13x-3>0\)

................

Đề có nhầm ko mà nghiệm xấu vậy ạ ?

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)