K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

2. để Bmax thì x+2/3 đạt GTNN=> x+2/3=0=>x=-2/3

3. 4x=21

    4x=-21 tự tính

x-1.5=2

x-1.5=-2

x+3/4=1/2

x+3/4=-1/2

3 tháng 7 2017

Vì : |4x-3| >= 0

       |5y+7,5| >= 0

nên |4x-3|+|5y+7,5|+17,5>= 0+0+17,5

hay E>= 17,5

Dấu " =" xảy ra khi: \(\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\)   <=>\(\hept{\begin{cases}4x=3\\5y=-7,5\end{cases}}\)

                          <=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

Vậy MinE = 17,5 khi (x,y) = (\(\frac{3}{4}\); -1,5)

15 tháng 3 2017

Ta có:P=(/x-3/+2)^2+(y+3)+2017

Ta thấy:/x-3/\(\ge\)0

   \(\Rightarrow\)/x-3/+2\(\ge\)2

  \(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4

       y\(\ge\)0

  \(\Rightarrow\)y+3\(\ge\)3

Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017

                            =2024

Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0

                                                          \(\Rightarrow\)x-3=0

                                                                 x    =0+3

                                                                  x   =3

                                                           +, y+3=0

                                                              y    =0-3

                                                            y      =-3

23 tháng 7 2020

Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)

Vậy GTNN của A là - 7 khi x = 1,5

3 tháng 11 2017

Đặt \(A=\left|x-1,5\right|+\left|x-2,5\right|\)

Ta có : \(\left|x-1,5\right|\ge0.Với\forall x\in R\)

\(\left|x-2,5\right|\ge0.Với\forall x\in R\)

\(\Rightarrow A=\left|x-1,5\right|+\left|x-2,5\right|\ge0\)

Dấu " = " xảy ra khi \(\orbr{\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\Rightarrow x=\orbr{\begin{cases}1,5\\2,5\end{cases}}}\). Vậy Min A = 0 khi và chỉ khi \(x=\orbr{\begin{cases}1,5\\2,5\end{cases}}\)