\(\sqrt{2x^2-4x+12}=4x+8-2x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

ĐKXĐ:x∈R

\(\sqrt{2x^2-4x+12}=4x+8-2x^2\)

\(\Leftrightarrow2x^2-4x+12=\left(4x+8-2x^2\right)^2\)

\(\Leftrightarrow2x^2-4x+12=4x^4-16x^3-16x^2+64x+64\)

\(\Leftrightarrow4x^4-16x^3-18x^2+68x+52=0\)

\(\Leftrightarrow2x^4-8x^3-9x^2+34x+26=0\)

\(\Leftrightarrow2x^4-8x^3-9x^2+34x+26=0\)

rồi bạn phân tích đa thức thành nhân tử với nhân tử \(x^2-2x-2\) nhé

27 tháng 11 2021

ko lm kiểu này đc bn ạ

NV
19 tháng 5 2019

Câu 1:

\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)

- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm

- Nhận thấy \(x=-1\) là 1 nghiệm

- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:

\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)

\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)

\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)

\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)

Vậy pt có nghiệm \(x=\pm1\)

Câu 2:

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)

- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:

\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)

- Nếu \(1\le x< 2\) pt trở thành:

\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)

Vậy nghiệm của pt là \(x\ge2\)

NV
19 tháng 5 2019

Câu 3:

Bình phương 2 vế ta được:

\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)

\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)

\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)

Đặt \(x^2+x+1=a>0\) pt trở thành:

\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Câu 5:

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

\(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)

\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)

Vậy nghiệm của pt là \(5\le x\le10\)

17 tháng 10 2020

1) Ta có: \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\cdot\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)

\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{25}{4}\cdot2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{50}{4}}+12\right)\)

\(=-12\sqrt{2}+12-\frac{5\sqrt{2}}{2}-12\)

\(=\frac{-24\sqrt{2}-5\sqrt{2}}{2}\)

\(=\frac{-29\sqrt{2}}{2}\)

2) Ta có: \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)

\(=\frac{26\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}+\frac{4}{2-\sqrt{3}}\)

\(=\frac{26\left(5-2\sqrt{3}\right)}{25-12}+\frac{4\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=2\left(5-2\sqrt{3}\right)+4\left(2+\sqrt{3}\right)\)

\(=10-4\sqrt{3}+8+4\sqrt{3}\)

\(=18\)

3) ĐK để phương trình có nghiệm là: x≥0

Ta có: \(\sqrt{x^2-6x+9}=2x\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x\)

\(\Leftrightarrow\left|x-3\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={1}

4) ĐK để phương trình có nghiệm là: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{4x^2+1}=2x-1\)

\(\Leftrightarrow\left(\sqrt{4x^2+1}\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow4x^2+1=4x^2-4x+1\)

\(\Leftrightarrow4x^2+1-4x^2+4x-1=0\)

\(\Leftrightarrow4x=0\)

hay x=0(loại)

Vậy: S=∅

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha

3 tháng 7 2015

A)ĐKXĐ: x2-2x+1\(\ge\)0

<=>(x-1)2\(\ge\)0 luôn đúng với mọi x nên với mọi x thì \(\sqrt{x^2-2x+1}-x\)đều có nghĩa

\(\sqrt{x^2-2x+1}-x=\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

nếu x\(\ge\)1 thì:

\(\left|x-1\right|-x=x-1-x=-1\)

nếu x\(\le\)1 thì

\(\left|x-1\right|-x=1-x-x=1-2x\)

mjk  làm câu a thuj chán lắm