Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình:
a) \(2\sqrt{4x-8}-\dfrac{2}{3}\sqrt{9x-18}=\sqrt{49x-98}-10\)
b) \(x-\sqrt{x-1}=3\)
\(a,ĐK:x\ge2\\ PT\Leftrightarrow4\sqrt{x-2}-2\sqrt{x-2}-7\sqrt{x-2}=-10\\ \Leftrightarrow-5\sqrt{x-2}=-10\\ \Leftrightarrow\sqrt{x-2}=2\Leftrightarrow x-2=4\\ \Leftrightarrow x=6\left(tm\right)\\ b,ĐK:x\ge1\\ PT\Leftrightarrow x-3=\sqrt{x-1}\\ \Leftrightarrow x^2-6x+9=x-1\\ \Leftrightarrow x^2-7x+10=0\\ \Leftrightarrow\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\left(tm\right)\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$
a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow2\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy.......
a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)
\(=\sqrt{x-3}+3-x\)
c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)
=>2 căn x-2=18
=>x-2=81
=>x=83
Giải:
\(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
ĐKXĐ: \(x-2\ge0\Leftrightarrow x\ge2\)
\(7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow2\sqrt{x-2}=8\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\) (thỏa mãn)
Vậy ...
1/ \(\Leftrightarrow\left|2x-1\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow6\sqrt{x+2}-2\sqrt{x+2}=9\sqrt{x+2}-10\)
\(\Leftrightarrow5\sqrt{x+2}=10\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x=2\)
a) \(4\sqrt{4x-8}-2\sqrt{9x-18}+\sqrt{16x-32}=5\)
\(\rightarrow4.2\sqrt{x-2}-2.3\sqrt{x-2}+4\sqrt{x-2}=5\)
\(\rightarrow\sqrt{x-2}\left(8-6+4\right)=5\)
\(\rightarrow6\sqrt{x-2}=5\)
\(\rightarrow\sqrt{x-2}=\frac{5}{6}\)
\(\rightarrow x-2=\frac{25}{36}\)
\(\Rightarrow x=\frac{97}{36}\)
b)\(\sqrt{x^2+6x+9}-2=7\)
\(\rightarrow\sqrt{\left(x+3\right)^2}=9\)
\(\rightarrow x+3=9\)
\(\Rightarrow x=6\)
Nhớ tick mik nha
à ừ, nhầm chút!! thông cảm nha! có gì bạn tham khảo bài của Mo Nguyễn Văn
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\x-1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=2\\x>=1\end{matrix}\right.\)
=>x>=2
\(\sqrt{49x-98}-\sqrt{9x-18}-\sqrt{16x-32}=\sqrt{4x-4}\)
=>\(7\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=\sqrt{4x-4}\)
=>\(\sqrt{4x-4}=0\)
=>4x-4=0
=>4x=4
=>x=1