Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x=14 nên 15=x+1
\(A\left(x\right)=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-15\)
\(A\left(x\right)=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}+...+x^4+x^3-x^3+x^2+x^2+x-15\)
\(A\left(x\right)=x^2+x^2+x-15\)
\(\Leftrightarrow A\left(x\right)=14^2+14^2+14-15=196+196-1\)
\(A\left(x\right)=391\)
<=> 405 - 105x = 270 - 45x
<=> -105x + 45x = - 405 + 270
<=> -60x = -180
<=> x = 3
\(3^{x+2}\cdot5^y=45^x\)
\(\Leftrightarrow3^{x+2}\cdot5^y=3^{2x}\cdot5^x\)
=>x=y và 2x=x+2
=>x=y=2
Ta thấy \(x=14\Rightarrow x+1=15\)
Thay x+1=15 vào biểu thức A ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-1\)
\(=x-1\)(1)
Thay x=14 vào (1) ta được :
\(A=14-1\)
\(=13\)
Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) ta có:
A(x)= x15-(x+1)x14+(x+1)x13-(x+1)x12+...+(x+1)x3-(x+1)x2+(x+1)x-15
= x15-x15-x14+x14+x13-x13-x12+...+x4+x3-x3-x2+x2-x-15
= x-15
=> A(14) = 14-15=-1
Vậy A(14) = -1
b.* Với x=0 ta có:
0.f(-4)=-2.f(0)
=> 0=-2.f(0) => f(0)=0
=> đa thức f(x) có 1 nghiệm là 0 (1)
* với x=2 ta có: 2.f(-2)=0.f(2)
=> 2.f(2)=0 => f(2)=0
=> 2 là nghiệm của đa thức f(x) (2)
Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm
trình bày nhé ko ghi kết quả
\(45^x:15^x=81\)
\(\Leftrightarrow3^x=81\)
hay x=4