Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,a là số nguyên tố ⇒4a+11≥4.2+11⇒4a+11≥4.2+11 (Vì 4a+11 nhỏ nhất khi a nhỏ nhất ⇒a=2⇒a=2 )
Các số nguyên tố bé hơn 30 và lớn hơn 15 là :19;23;29
Xảy ra 3 trường hợp:
Nếu 4a+11=19⇒a=24a+11=19⇒a=2 (thoả mãn)
Nếu 4a+11=23⇒a=34a+11=23⇒a=3 (thoả mãn)
Nếu 4a+11=29⇒a=4,54a+11=29⇒a=4,5 (không thoả mãn)
Vậy a=3 hoặc a=2
b,Với P=3⇒p+2=5⇒p+4=7⇒p+2 và P+4 là số nguyên tố
Với P>3 có 3k+1 hoặc 3k+2
+ Nếu P=3k+1 ⇒p+2=3k+1+2=3k+3⋮3( loại)
+ Nếu P=3k+2 ⇒p+4 =3k+2+4=3k+6⋮3(loại)
Vậy P=3
c,Nếu p = 3k (k ∈ N ) và p là số nguyên tố
=> k = 1 => p = 3
=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)
=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)
Nếu p = 3k + 1
=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5) chia hết cho 3 (loại)
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) chia hết cho 3 (loại)
Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố
a) Theo bài ra ta có :
4p + 11 < 30
=> 4p < 30 - 11
=> 4p < 19
=> p < 19 : 4
=> p < 4,75
Vì p là số nguyên tố
=> p \(\in\){2;3}
Vậy p \(\in\){2;3}
b) +) Nếu p = 2
=> p + 2 = 2 + 2 = 4 (hợp số)
=> p = 2 loại
+) Nếu p = 3
=> p + 2 = 3 + 2 = 5 (số nguyên tố) => chọn
p + 4 = 3 + 4 = 7 (số nguyên tố) => chọn
=> p = 3 chọn
+) Nếu p > 3
=> p = 3k + 1 hoặc p = 3k + 2 (k \(\in\)N*)
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3k + 3.1 = 3(k+1) \(⋮\)3 (hợp số)
=> p = 3k + 1 loại
Nếu p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3(k + 2) \(⋮\)3 (hợp số)
=> p = 3k + 2 loại
Vậy p = 3
c) +) Nếu p = 2
=> p + 10 = 2 + 10 = 12 (hợp số)
=> p = 2 loại
+) Nếu p = 3
=> p + 10 = 3 + 10 = 13 (số nguyên tố) => chọn
p + 14 = 3 + 14 = 17 (số nguyên tố) => chọn
=> p = 3 chọn
+) Nếu p > 3
=> p = 3k + 1 hoặc p = 3k + 2 (k \(\in\)N*)
Nếu p = 3k + 1
=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3k + 3.5 = 3(k+5) \(⋮\)3 (hợp số)
=> p = 3k + 1 loại
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3k + 3.4 = 3(k + 4) \(⋮\)3 (hợp số)
=> p = 3k + 2 loại
Vậy p = 3
Ta có: p≥2p≥2
Ta lại có:
4p+11<304p+11<30
⇒4p+11≤29⇒4p+11≤29
⇒4p≤18⇒4p≤18 hay 4p≤164p≤16
⇒p≤4⇒p≤4
Do đó p∈{2;3}p∈{2;3}
Ta xét 2TH:2TH:
TH1:TH1: Nếu p=2p=2 thì 4.2+11=8+11=19(tmđk)4.2+11=8+11=19(tmđk)
TH2:TH2: Nếu p=3p=3 thì 4.3+11=12+11=23(tmđk)4.3+11=12+11=23(tmđk)
Vậy: p∈{2;3}
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
1. Hợp số có ước khác 1 và chính nó.
2.số nguyên tố là số chỉ có ước là 1 và chính nó
3.hợp số lẻ nhỏ nhất là 9.
4.số nguyên tố chẵn duy nhất là 2.
5. có 25 số nguyên tố nhỏ hơn 100
6.kiểm tra xem ước của nó là gì.
7. ta có 30=2.3.5 mà ước lớn hơn 5 nên chỉ có 6,10,15 và 30 là ước thỏa mãn
8.bội của 1 là tập số tự nhiên
9 ước của 1 là chính nó
10. 0 và 1 không là số nguyên tố cũng không là hợp số
1. Hợp số là số có nhiều hơn 2 ước
2. Số nguyên tố là số có 2 ước là 1 và chính nó
3. Hợp số lẻ nhỏ nhất : 9
4. Số nguyên tố chẵn duy nhất : 2
5. Có 25 số nguyên tố nhỏ hơn 100
6. Lần lượt chia số đó cho 1 ; 2 ; 3 ; ....... nếu số đó chia hết cho hơn 2 số thì số đó là hợp số, và ngược lại nếu số đó chia hết cho 2 số (1 và chính nó) thì số đó là số nguyên tố
7. Ta có : 30 = 2 . 3 . 5 mà các ước cần tìm lớn hơn 5 => Các ước cần tìm là : 6 ; 10 ; 15 ; 30
8. B(1) = {0 ; 1 ; 2 ; 3 ; 4 ; .......} => B(1) = N
9. Ư(1) = 1
10. Số 0 và 1 không phải số nguyên tố cũng chăng phải là hợp số.