K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

\(\left\{{}\begin{matrix}\left(3x+2\right)\left(2y-3\right)=6xy\\\left(4x+5\right)\left(y-5\right)=4xy\end{matrix}\right.\)

\(\left\{{}\begin{matrix}6xy-9x+4y-6=6xy\\4xy-20x+5y-25=4xy\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-9x+4y=6\\-20x+5y=25\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-\dfrac{45}{4}x+5y=\dfrac{15}{2}\\-20x+5y=25\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-\dfrac{45}{5}x+5y=\dfrac{15}{2}\\\dfrac{35}{4}x=\dfrac{35}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;3)

22 tháng 5 2018

\(\hept{\begin{cases}2x+2y+3x-3y=4\\2x-2y+x+y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x-y=4\\3x-y=5\end{cases}}.\)

\(2x=-1\Leftrightarrow x=\frac{-1}{2}\) " thay x = 1/2 rồi tự làm

b) 

\(\hept{\begin{cases}6xy-9x+4y-6=6xy\\4xy-20x+5y-25=4xy\end{cases}\Leftrightarrow\hept{\begin{cases}-9x+4y=6\\-20x+5y=25\end{cases}}}\)

4y 5y " chung 20 "

\(\hept{\begin{cases}-45x+20y=30\\-80x+20y=100\end{cases}}\Leftrightarrow35x=-70\Leftrightarrow x=-2\)

thay x=-2 vào pt 1 hoăc 2 rồi tự làm

22 tháng 5 2018

hệ phương trình trên bạn đặt x+y=a và x-y= b sau đó bạn giải hệ vừa đặt ẩn phụ để tìm a, b rồi bạn giải cái hệ x+y=a và x-y= b là tìm đc x và y bạn nhé!

còn hệ phương trình dưới thì bạn chỉ cần nhân vào rồi chuyển vế nó sẽ mất hạng tử chứa x.y thì nó sẽ trở thành hệ bình thường rồi bạn giải hệ đó ra sẽ tìm đc x và y nha bạn!

14 tháng 2 2021

\(\left\{{}\begin{matrix}\left(3x+2\right)\left(2y-3\right)=6xy\\\left(4x+5\right)\left(y-5\right)=4xy\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\text{6xy+4y-9x-6=6xy}\\\text{4xy+5y-20x-25=4xy}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\text{4y-9x=6}\\\text{5y-20x=25}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\text{20y-45x=30}\\\text{20y-80x=100}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\text{35x=-70}\\\text{4y-9x=6}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\text{x=-2}\\\text{4y-9.(-2)=6}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\text{x=-2}\\\text{y=-3}\end{matrix}\right.\)

vậy ...

 

Ta có: \(\left\{{}\begin{matrix}\left(3x+2\right)\left(2y-3\right)=6xy\\\left(4x+5\right)\left(y-5\right)=4xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6xy-9x+4y-6-6xy=0\\4xy-20x+5y-25-4xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-9x+4y=6\\-20x+5y=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-180x+80y=120\\-180x+45y=225\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}35y=-105\\-9x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\-9x=6-4y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-9x=6-4\cdot\left(-3\right)=6+12=18\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(-2;-3)

22 tháng 3 2020
https://i.imgur.com/6Fppl9g.jpg
22 tháng 3 2020

\( a)\left\{ \begin{array}{l} x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\ \left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\ x = - \dfrac{{1 + \sqrt 3 - y\sqrt 5 - y\sqrt {15} }}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \dfrac{{ - 1 - \sqrt 3 - \sqrt 5 }}{3}\\ y = - \dfrac{{ - 1 - \sqrt 3 - \sqrt 5 }}{3} \end{array} \right.\\ b)\left\{ \begin{array}{l} 0,2x + 0,1y = 0,3\\ 3x + y = 5 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 0,2x + 0,1y = 0,3\\ y = 5 - 3x \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 2\\ y = - 1 \end{array} \right.\\ c)\left\{ \begin{array}{l} \left( {3x + 2} \right)\left( {2y - 3} \right) = 6xy\\ \left( {4x + 5} \right)\left( {y - 4} \right) = 4xy \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \dfrac{4}{9}y - \dfrac{2}{3}\\ \left( {4x + 5} \right)\left( {y - 4} \right) = 4xy \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - \dfrac{{50}}{{19}}\\ y = - \dfrac{{84}}{{19}} \end{array} \right. \)

13 tháng 1 2018

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

NV
4 tháng 6 2019

\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)

\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)

\(\Leftrightarrow\left(3x-y+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)

Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải