Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(27< 3^x< 3\cdot81\)
=> \(3^3< 3^x< 3\cdot3^4\)
=> \(3^3< 3^x< 3^5\)
=> x = 4
b, \(4^{15}\cdot9^{15}< 2^x\cdot3^x< 18^{16}\cdot216\)
=> \(\left[2^2\right]^{15}\cdot\left[3^2\right]^{15}< 2^x\cdot3^x< \left[2\cdot3^2\right]^{16}\cdot6^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{16}\cdot3^{32}\cdot2^3\cdot3^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{19}\cdot3^{35}\)
Đến đây tìm được x
\(c,2^{x+1}\cdot3^y=2^{2x}\cdot3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\Leftrightarrow x=1\)
\(d,6^x:2^{2000}=3^y\)
=> \(\frac{6^x}{3^y}=2^{2000}\)
=> \(\frac{3^{2x}}{3^y}=2^{2000}\)
=> \(3^{2x-y}=2^{2000}\)
Đến đây tìm thử x,y
\(a,3^x=\frac{9^4}{27^3}\)
\(\Leftrightarrow3^x=3^8:3^9\)
\(\Leftrightarrow3^x=3^{-1}\)
\(\Leftrightarrow x=-1\)
\(b,\frac{5^5}{5^x}=5^{18}\)
\(\Leftrightarrow5^x=5^5:5^{18}\)
\(\Leftrightarrow5^x=5^{-13}\)
\(\Leftrightarrow x=-13\)
A;3x=94/(9*3) 3=94=93*33=93*9=94
3X=94=38
X=8
B;55/5x=518=55-x
=>5-x=18
x=5-18
x=-13
1.a) \(\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5=\frac{3^{15}}{5^{15}}.\frac{5^{10}}{3^{10}}=\frac{3^5}{5^5}=\left(\frac{3}{5}\right)^5\)
b)\(\left(\frac{2}{3}\right)^{10}:\left(\frac{4}{9}\right)^4=\frac{2^{10}}{3^{10}}.\frac{3^8}{2^8}=\frac{2^2}{3^2}=\left(\frac{2}{3}\right)^2\)
2.
a)\(2^x=4\Rightarrow2^x=2^2\Rightarrow x=2\)
b)\(x^3=-27\Rightarrow x^3=-3^3\Rightarrow x=-3\)
c)\(x^2=16\Rightarrow x=\pm4\)
d)\(\left(x+1\right)^2=9\Rightarrow\hept{\begin{cases}x+1=3\Rightarrow x=2\\x+1=-3\Rightarrow x=-4\end{cases}}\)
\(a,=\frac{4^2.4^3}{2^{10}}=4^5:2^{10}=\left(2^2\right)^5.:2^{10}=2^{10}:2^{20}=1\)
\(b,=\left(3^3\right)^5:3^8=3^{15}:3^8=3^7\)
\(c,=\left(3^3\right)^2.\left(5^2\right)^3=3^6.5^6=\left(3.6\right)^6=18^6\)
\(d,=\left(15^2\right)^4.9^4=225^4.9^4=\left(225.9\right)^4=2025^4\)
\(\Leftrightarrow3^x\cdot82=3^{50}+3^{54}=3^{50}\cdot82\)
hay x=50