K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2023

\(3^{x-1}.7+3^{x-1}.2=9\\ 3^{x-1}.\left(7+2\right)=9\\ 3^{x-1}.9=9\\ 3^{x-1}=\dfrac{9}{9}=1\\ Mà:3^0=1\\ Nên:x-1=0\\ Vậy:x=0+1=1\\ ---\\ P=2+2^2+2^3+...+2^{65}+2^{66}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\\ =2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{64}\left(1+2+2^2\right)\\ =2.7+2^4.7+...+2^{64}.7\\ =\left(2+2^4+....+2^{64}\right).7⋮7\left(đpcm\right)\)

3 tháng 11 2023

+)
\(3^{x-1}.7+3^{x-1}.2=9\)
\(3^{x-1}.\left(7+2\right)=9\)
\(3^{x-1}.9=9\)
\(3^{x-1}=9:9\)
\(3^{x-1}=1\)
\(3^{x-1}=3^0\)
\(x-1=0\)
\(x=0+1\)
\(x=1\)
Vậy \(x=1\)

+)
\(2+2^2+2^3+...+2^{65}+2^{66}\)
Vì \(2+2^2+2^3=14\) mà \(14\)\(7\)
⇒Ta nhóm 3 số với nhau
Ta có:
\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\)
\(\left(2+2^2+2^3\right)+2^3.\left(2+2^2+2^3\right)+...+2^{63}.\left(2+2^2+2^3\right)\)
\(14.1+14.2^3+...+14.2^{63}\)
\(14.\left(1+2^3+...+2^{63}\right)\)
Do \(14\)\(7\) nên \(P=14.\left(2+2^3+...+2^{63}\right)\)\(7\)

Xin tick

   

   

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

21 tháng 10 2023

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

14 tháng 5 2019

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

A = 2 + 2 2 + 2 3 + … + 2 60     = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7

23 tháng 10 2018

20 tháng 7 2018

5 tháng 5 2017

1. \(S=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(S=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)

\(S=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}\)

\(S=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)

\(S=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)

\(S=\frac{1}{100}.\frac{101}{2}\)

\(S=\frac{101}{200}\)

2. 

Vì 3x - 5y \(⋮\)23

\(\Rightarrow\)6 . ( 3x - 5y ) \(⋮\)23

Ta có : 6 . ( 3x - 5y ) + ( 5x - 16y )

\(\Leftrightarrow\)( 18x - 30y ) + ( 5x - 16y )

\(\Leftrightarrow\)23x - 46y

\(\Leftrightarrow\)23 . ( x - 2y ) \(⋮\)23

Vì 18x - 30y \(⋮\)23 mà ( 5 ; 23 ) = 1

\(\Rightarrow\)5x - 16y \(⋮\)23

5 tháng 5 2017

SKT_NTT sai câu 1 rồi từ đoạn thứ 2