K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

P=a+{(a-3)-[(a+3)-(-a-2)]}

=a+a-3-a-3+a+2

=2a-4

Q=[a+(a+3)]-[(a+2)-(a-2)]

=a+a+3-a-2+a+2

=2a+3

=> P<Q

tk nha!

P=a+{(a-3)-[(a+3)-(-a-2)]}

=a+a-3-a-3+a+2

=2a-4

Q=[a+(a+3)]-[(a+2)-(a-2)]

=a+a+3-a-2+a+2

=2a+3

=> P<Q

2 tháng 4 2020

7;-7;9;-9

2 tháng 4 2020

(a2-49).(a2-81)=0

=>(a2-49)=0 hoặc(a2-81)=0

TH1:(a2-49)=0

=>a2=49

=>a=7

TH2:(a2-81)=0

=>a2=81

=>a=9

 Vậy a={7;9}

nhớ k mk nha

20 tháng 6 2020

6/7+5/8÷5-3/16×(-2)²

=6/7+1/8-3/4

=55/56-3/4

=13/56

b.2/3 + 1/3.( -4/9 + 5/6 ) : 7/12

   =2/3 + 1/3. ( -8/18 + 15/18 ) : 7/12

    =2/3 + 1/3 . 7/18 : 7/12

      =2/3 + 7/54 : 7/12

      = 2/3 + 2/9

       =6/9 + 2/9

        = 8/9

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

29 tháng 4 2019

2x + 3 chia hết cho x - 1

=> 2x - 2 + 5 chia hết cho x - 1

=> 2(x - 1) + 5 chia hết cho x - 1

=> 5 chia hết cho x - 1

29 tháng 4 2019

bạn ơi giải lun mấy câu kia lun đê

28 tháng 12 2018

a) 3A = 3. ( 30 + 31 + 32 +...+ 311)

3A     =  31 + 32 +33 +....+ 312 

3A - A = 31 +32+33 +...+312 - 30 - 31-32- ...- 311

2A       =   312 -1

A          = (312 -1) : 2

b) A = ( 30 + 31 + 3 33) + .... + ( 38 + 39 + 310 + 311)

    A =        40                   + ... + 38 . ( 30 + 31 +32 +33)

    A = 40                            +  ... + 38 .40

    A = 40 . ( 1 + ...+ 38)

   Vì 40 chia hết cho 40 

 => 40.  ( 1 + ...+38)  chia hết cho 40

Vậy A chia hết cho 40

28 tháng 12 2018

Thanks nhiều ạ !!!

26 tháng 7 2019

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)\(\frac{1}{4^2}< \frac{1}{3\cdot4}\); ....; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow S< 1-\frac{1}{9}\)

\(\Rightarrow S< \frac{8}{9}\)    (1)

\(\frac{1}{2^2}>\frac{1}{2\cdot3};\frac{1}{3^2}>\frac{1}{3\cdot4};\frac{1}{4^2}>\frac{1}{4\cdot5};...;\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow S>\frac{2}{5}\)   (2)

(1)(2) => 2/5 < S < 8/9

26 tháng 7 2019

\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}< \frac{1}{a^2}\)

\(\frac{1}{a}-1-\frac{1}{a}=-1< \frac{1}{a^2}\) Vì \(\frac{1}{a^2}>0;-1< 0\)

Khi đó thì ĐỀ SAI