Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 20162016 + 20162017 = 20162016.(1+2016) = 20162016 . 2017 chia hết chi 2017
Giả sử 20162016 + 20162017 không chia hết cho 2017
Ta có : 20162 = 4064256 = 2015 x 2017 + 1
=> 20162 = 1 ( mod 2017 )
=> (20162)^1008 = 11008 ( mod 2017 )
=> 20162016 = 1 ( mod 2017 )
Ta lại có : 20162016 x 2016 = 1 x 2016 ( mod 2017 )
=> 20162017 = 2016 ( mod 2017 )
Nên 20162016 + 20162017 = 0 ( mod 2017 )
Vậy điều đã giả sử là sai
=> 20162016 x 20162017 chia hết cho 2017 .
mình nha . Yêu , chúc bạn học thật tốt
P có tất cả 2016 số hạng. Nhóm 4 số hạng liên tiếp với nhau ta được 504 nhóm như sau:
P=(7+72+73+74)+...+(72013+72014+72015+72016)
=> P=7.(1+7+72+73)+...+72013(1+7+72+73)
=> P=7.(1+7+49+343)+...+72013(1+7+49+343)
=> P=7.400+...+72013.400
=> P=400.(7+...+72013)
=> P=202.(7+...+72013)
=> P chia hết cho 202
\(\Leftrightarrow\left(a^{2016}+b^{2016}\right).\left(c^{2016}-d^{2016}\right)=\left(a^{2016}-b^{2016}\right).\left(c^{2016}+d^{2016}\right)\)
\(\Leftrightarrow ac^{2016}-ad^{2016}+bc^{2016}-bd^{2016}=ac^{2016}+ad^{2016}-bc^{2016}-bd^{2016}\)
\(\Leftrightarrow-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\)
nếu \(-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}=0\)
\(\Rightarrow ad^{2016}-bc^{2016}=0\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\left(1\right)\)
nếu \(\text{}-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\ne0\Rightarrow ad=-bc\Rightarrow\frac{a}{b}=-\frac{c}{d}\left(2\right)\)
từ (1) và (2) => đpcm
Ta có:
\(3^{2016}-1=\left(3^4\right)^{504}-1=\overline{...1}^{504}-1=\overline{...1}-1=\overline{...0}\)
Vì \(\overline{...0}⋮10\) nên 32016 - 1 \(⋮\)10