Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{201.203}\)
\(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{201.203}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{201}-\frac{1}{203}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{203}\right)\)
\(=\frac{3}{2}.\left(\frac{203}{1015}-\frac{5}{1015}\right)\)
\(=\frac{3}{2}.\frac{198}{1015}\)
\(=\frac{297}{1015}\)
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tham khảo nha !!!
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 201.203.6
6A=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 201.203(205-199)
6A=(1.3.5 + 1.3) +( 3.5.7 - 1.3.5) + (5.7.9 - 3.5.7) + ... + (201.203.205 - 199.201.203)
6A=3+201.203.205
6A=8364618
A=\(\frac{8364618}{6}\)
A=1394103
a: \(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{201}-\dfrac{1}{203}=\dfrac{1}{3}-\dfrac{1}{203}=\dfrac{200}{609}\)
b: \(B=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=\dfrac{1}{4}-\dfrac{1}{76}=\dfrac{18}{76}=\dfrac{9}{38}\)
1/3.5+1/5.7+1/7.9+...+1/(2x+1)(2x+3)=5/31
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=5/31
1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3=5/31:1/2
1/3-1/2x+3=10/31
1/2x+3=1/3-10/31
1/2x+3=1/63
suy ra : 2x+3=63
2x=63-3
2x=60
x=60:2
x=30
vay x=30
nhớ **** cho mình nha
G=\(\frac{3}{2.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2015.2017}\)
G=\(3.\left(\frac{1}{2.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}\right)\)
G=\(3.\left(\frac{1}{2}.\frac{1}{5}+\frac{1}{5}.\frac{1}{7}+\frac{1}{7}.\frac{1}{9}+...+\frac{1}{2013}.\frac{1}{2015}+\frac{1}{2015}.\frac{1}{2017}\right)\)
G=\(3.\left(\frac{1}{2}+\frac{1}{2017}\right)\)
G=1.5
Anh ko bik có đúng ko nữa lâu quá rồi. Em thông cảm nhé
S=\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+....+\(\frac{2}{93.95}\)+\(\frac{3}{95.98}\)+\(\frac{4}{98.102}\)+\(\frac{5}{102.107}\)+\(\frac{2012}{107.2119}\)
S=\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+....+\(\frac{1}{93}\)-\(\frac{1}{95}\)+\(\frac{1}{95}\)-\(\frac{1}{98}\)+\(\frac{1}{98}\)-\(\frac{1}{102}\)+\(\frac{1}{102}\)-\(\frac{1}{107}\)+\(\frac{1}{107}\)-\(\frac{1}{2119}\)
S=\(\frac{1}{5}\)-\(\frac{1}{2119}\)
S=\(\frac{2114}{10595}\)
\(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{201.203}\)
\(=\frac{1}{2}.2.\left(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{201.203}\right)\)
\(=\frac{1}{2}.2.3.\left(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{201.203}\right)\)
\(=\left(\frac{1}{2}.3\right).2.\left(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{201.203}\right)\)
\(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{201.203}\right)\)
Vì muốn chuyển 3/5.7 = 1/5 - 1 /7 thì tử số phải bằng hiệu của mẫu số nên 3/5.7= 3/5.7 chia 2/5.7 = 3/2 . 2/5.7 các phân số khác cũng tương tự như thế
nên ta có 3/5.7 +3/7.9 +...3/201.203 = 3/2. (2/5.7+2/7.9+...+2/201.203)