Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3^8:3^4+2^2\cdot2^3\)
=81+32
=123
b: \(3\cdot4^2-2\cdot3^2\)
\(=48-18\)
=30
a, 38: 34+ 22. 23
= 38-4 + 22+3
= 34 + 25
= 81 + 32
= 113
b, 3 . 42- 2 . 32
= 3 . 16 - 2 . 9
= 48 - 18
= 30
c, 84 : 4 + 39: 37+ 50
= 84 : 4 + 32 + 1
= 84 : 4 + 9 + 1
= 21 + 9 + 1
= 31
d, 295 - ( 31 - 22 . 5)2
= 295 - ( 31 - 4 . 5 )2
= 295 - ( 31 - 20 )2
= 295 - 112
= 295 - 121
= 174
e, 500 - {5[409 - (23 . 3 - 21)2 ] + 103 } : 15
= 500 - {5[409 - (8 . 3 - 21)2 ] + 103 } : 15
= 500 - {5[409 - (24 - 21)2 ] + 103 } : 15
= 500 - {5[409 - 32 ]+ 103 } : 15
= 500 - {5[409 - 9 ]+ 103 } : 15
= 500 - {5 . 400 + 1000 } : 15
= 500 - {2000 + 1000} : 15
= 500 - 3000 : 15
= 500 - 200
= 300
g, 53 . 2 - 100 : 4 + 23 . 5
= 125 . 2 - 100 : 4 + 8 . 5
= 250 - 25 + 40
= 225 + 40
= 265
h, 205 - [1200 - (42 - 2 . 3)3 ] : 40
= 205 - [ 1200 - ( 16 - 2 . 3 )3 : 40
= 205 - [ 1200 - ( 16 - 6 )3 ] : 40
= 205 - [ 1200 - 103 ] : 40
= 205 - [ 1200 - 1000 ] : 40
= 205 - 200 : 40
= 205 - 5
= 200
Đây nha bạn!!!
Bài 2:
a: \(17-x=3\)
=>\(x=17-3\)
=>x=14(nhận)
b: \(2\cdot\left(x-1\right):3=6\)
=>\(2\left(x-1\right)=6\cdot3=18\)
=>x-1=18/2=9
=>x=9+1=10(nhận)
c: \(x+\left(-2\right)=\left(-11\right)+7\)
=>\(x-2=-4\)
=>\(x=-4+2=-2\left(loại\right)\)
d: \(\left(x-1\right)^2-5=20\)
=>\(\left(x-1\right)^2=25\)
=>\(\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)
Câu 3:
a: Đặt *=a
\(\overline{57a3}⋮9\)
=>\(5+7+a+3⋮9\)
=>\(a+15⋮3\)
mà 0<=a<=9
nên a=3
=>*=a
b: \(A=123\cdot7+8+9\)
123*7 là số lẻ
9 là số lẻ
=>123*7+9 chia hết cho 2
mà 8 chia hết cho 2
nên \(A=123\cdot7+9+8⋮2\)
\(123\cdot7⋮3;9⋮3;8⋮̸3\)
=>\(A=123\cdot7+9+8⋮̸3\)
c: \(B=3\cdot5\cdot7+10^{50}\)
\(=5\cdot3\cdot7+5\cdot5^{49}\cdot2^{49}\)
\(=5\left(3\cdot7+5^{49}\cdot2^{49}\right)⋮5\)
=>B là hợp số
Lời giải:
c. $=20:(-2)+12.5=-10+60=50$
d. $204:[80-(35-23)]+1=204:68+1=3+1=4$
c. =20:(−2)+12.5=−10+60=50=20:(−2)+12.5=−10+60=50
d. 204:[80−(35−23)]+1=204:68+1=3+1=4
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
a, 2.(x – 5)+7 = 77
<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
<=> x - 1 3 - 3 + 2 4 = 14
<=> x - 1 3 = 14 + 3 - 16 = 1
<=> x – 1 = 1 <=> x = 2
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A = 2 + 2 2 + 2 3 + . . . + 2 2017
=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )
=> A = 2 2017 - 1
Ta có: 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 => 2 2017 - 1 = 2 x - 1 - 1 => x = 2018
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
<=> 5 2 x - 3 = 5 2 . 3 + 5 2 . 2
<=> 5 2 x - 3 = 5 2 . ( 3 + 2 )
<=> 5 2 x - 3 = 5 3
<=> 2x – 3 = 3 => x = 3
=3+2=5
\(3^4:3+2^3:2=3^3+2^2=27+4=31\)