Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
33...3.333..3=3.1111....1.333...3
=999...9.1111...1
=(100...0-1).111...1(50 chữ số 0)
=111...100...0-11...1
=11...1088..89(49 chữ số 1;49 chữ số 8)
bạn vào đây nha Find the value of the multiplication below:A=33333...3333x999999...9999 {50 numbers} {50 numbers}
A = 333...333 . 999...999
50 CS 3 50 CS 9
A = 333...333 . ( 1000...000 - 1 )
50 CS 3 50 CS 0
A = 333...33 000....000 - 333...333
50 CS 3 50 CS 0 50 CS 3
Đặt phép trừ :
333...333 000...000
- 333...333
333...3 32 666...667
49 CS3 49 CS 6
Vậy A = 333...333 2 666...6 7
49 CS 3 49 CS 6
5555511111=(5.11111)11111
3333333333=(3.11111)3.11111=(27.111113)11111
Vì (5.11111)11111<(27.111113)11111 nên 5555511111<3333333333
a=11111x3^444444=11111^44444x3=11111^133332
b=11111x4^33333=11111^33333x4=11111^133332
=>a=b
33...3.333..3=3.1111....1.333...3
=999...9.1111...1
=(100...0-1).111...1(50 chữ số 0)
=111...100...0-11...1
=11...1088..89(49 chữ số 1;49 chữ số 8)
11108889...................