Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^{10}.3^8-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=\frac{1-3}{1+5}=\frac{-1}{3}\)
\(\frac{1}{2}:2x=-\frac{1}{3}\)
\(2x=-\frac{3}{2}\)
\(x=-\frac{3}{4}\)
\(\frac{x}{3}=\frac{y}{2}=\frac{2x}{6}=\frac{5y}{10}=\frac{2x-5y}{6-10}=\frac{-32}{-4}=8\)
\(\Rightarrow\hept{\begin{cases}x=24\\y=16\end{cases}}\)
x/3=y/2 nên 2x=3y
Ta có:
2x-5y=-32
3y-5y=-32
-2y=-32
y=16
suy ra: x=24
Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)
=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)
=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)
=> 15S = \(2^3-\frac{1}{2^{101}}\)
=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)
Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)
a) A = 3² . 1/243 . 81² . 1/3²
= 3² . 1/3⁵ . (3⁴)² . 1/3²
= 3² . 1/3⁷ . 3⁸
= 3¹⁰ . 1/3⁷
= 3³
= 27
b) B = (4.2⁵) : (2³ . 1/6)
= (4.32) : (8 . 1/6)
= 128 : 4/3
= 96
c) C = (-1/3)³.(-1/3)².(-1/3)
= (-1/3)³⁺²⁺¹
= (-1/3)⁶
= 1/729
d) D = (-1/3)⁻¹ - (-6/7)⁰ + (1/2)² : 2
= -3 - 1 + 1/4 : 2
= -4 + 1/8
= -31/8
3^2.1/243.81^2.1/3^2
=9/243.81^2/3^2
=1/27.27^2/1
=27^2/27
=27
\(3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^2}=\frac{3^2\cdot81^2}{243\cdot3^2}=\frac{3^2\cdot3^8}{3^5\cdot3^2}=3^3=27\)