Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này giống toán lớp 6 hơn
m = 3/(1x4) + 3/(4x7) + ... + 3/(19x22)
= (4-1)/(1x4) + (7-4)/(4x7) + ... + (22-19)/(19x22)
= 4/(1x4) - 1/(1x4) + 7/(4x7) - 4/(4x7) + ... + 22/(19x22) - 19/(19x22)
= 1 - 1/4 + 1/4 - 1/7 + ... + 1/19 - 1/22
= 1-1/22
= 21/22
A=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2.\left(x+3\right)}\)
=> A=\(\frac{3}{1}-\frac{3}{4}+\frac{3}{4}+...+\frac{3}{2.x}-\frac{3}{2.\left(x+3\right)}\)
=> A =\(\frac{3}{1}-\frac{3}{2.\left(x+3\right)}\)
3/(1×4)+3/(4×7)+3/(7×10)+3/(10×13)+3/(13×16)
=1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16
=1-1/16
=15/16
31 x 434 x 737 x 10310 x 13 = 1.3289876e+12
mik phải dùng máy tính chứ có sịp nhân mới trả lời đc
nhỉ ?????
\(D=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(D=1-\frac{1}{100}\)
\(D=\frac{99}{100}\)
S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103
S=1/1-1/103
S=102/103
Vì 102/103<1 nên S<1
\(D=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(D=\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\)
\(D=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(D=\frac{2}{3}\left(1-\frac{1}{100}\right)\)
\(D=\frac{2}{3}\cdot\frac{99}{100}=\frac{33}{50}\)
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Đặt \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\frac{102}{103}\)
\(\Rightarrow B=\frac{68}{103}\)
Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\cdot\frac{102}{103}\)
\(A=\frac{68}{103}\)
Bài làm
3/1*4 + 3/4*7 + 3/7*10 + ... + 3/61*64
= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/61 - 1/64
= 1 - 1/64
= 64/64 - 1/64
= 63/64. ^.^
các bạn trả lời nhanh dùm minh nha ! mình đang cần gấp lắm đó