Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3^1+3^2+3^3) +(3^4+3^5+3^6)+.....+(3^2008+3^2009+3^2010)=3^1+(1+3^1+3^2)+3^4+(1+3^1+3^2)+.....+3^2008(1+3^2001+3^2002)=13 nhân (3+3^4+...+3^2008)chia hết cho 13
mk mới tham gia online math chưa chuyên nghệp lắm năm sau mk lên lớp 7.chào bạn
Ta có:
10 1 (mod 9)
=> 102009 12009 (mod 9)
=> 102009 1 (mod 9)
=> 102009 chia 9 dư 1 nên trừ 1 chia hết cho 9
Mà 9 chia hết cho 3 nên số trên cũng chia hết cho 3
3n+3+3n+1+2n+3+2n+2
=3n.33+3n.3+2n.23+2n.22
=3n(33+3)+2n(23+22)
=3n.30+2n.12
Vì 3n.30 chia hết cho 6(vì 30 chia hết cho 6)
2n.12 chia hết cho 6(vì 12 chia hết cho 6)
=>3n.30+2n.12 chia hết cho 6
=>đpcm
ta có : A=2+2^2+2^3+...+2^2010 chia ra thành các nhóm , mỗi nhóm có 2 số hạng
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A= 2(1+2)+2^3(1+2)+...+2^1009(1+2)
A=2.3+2^3.3+...+2^2009.3
A=3(2+2^3+...+2^2009) chia hết cho 3
phần b tương tự
đây lak toán lớp 6=>ông hok lớp 6 , lừa tui dễ lắm hả???
#G2k6#
\(A=2+2^2+2^3+....+2^{2009}+2^{2010}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}.\left(1+2\right)\)
\(A=2.3+2^3.3.....+2^{2009}.3\)
\(A=3\left(2+2^3+....+2^{2009}\right)⋮3\)
\(=\left(3^1+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=\left(3^1+3^2+3^3\right)+...+3^{2007}\left(3^1+3^2+3^3\right)\)
\(=39+...+3^{2007}.39=39\left(1+....+3^{2007}\right)\)
vì 39 chia hết cho 13 nên \(39\left(1+...+3^{2007}\right)\)chia hết cho 13
hay 3^1+3^2+3^3...+3^2009+3^2010 chia hết cho 13