K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Lời giải:

Ta có:

\(f(-2)=4a-2b+c\)

\(f(3)=9a+3b+c\)

\(\Rightarrow f(-2)+f(3)=13a+b+2c=0\) (theo giả thiết)

\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)(f(3)=-f^2(3)\leq 0\)

Do đó ta có đpcm.

18 tháng 12 2017

Ta có f(-2).f(3)=(4a-2b+c).(9a+3b+c)

=(4a-2b+c).(13a+b+2c-(4a-2b+c)

Mà 13a+b+2c=0\(\Rightarrow\)f(-2).f(3)=\(-\left[\left\{4a-2b+c\right\}^2\right]\)

Có (4a-2b+c)^2 luôn luôn \(\le\)0

Nên f(-2).f(3)\(\le\)0

2 tháng 5 2022

Ta có:

f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0

Suy ra⎡⎢ ⎢ ⎢ ⎢⎣{f(−2)>0f(3)<0{f(−2)<0f(3)>0⇒f(−2).f(3)<0

vậy......

 

2 tháng 5 2022

\(13a+b+2c=0\Rightarrow b=-13a-2c\)

\(f\left(x\right)=ax^2+bx+c\)

\(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)

\(=\left(4a-2\left(-13a-2c\right)+c\right)\left(9a+3\left(-13a-2c\right)+c\right)\)

\(=\left(4a+26a+4c+c\right)\left(9a-39a-6c+c\right)\)

\(=\left(30a+5c\right)\left(-30a-5c\right)\)

\(=-\left(30a+5c\right)^2\le0\)

-Dấu "=" xảy ra khi \(a=-b=-\dfrac{1}{6}c\)

16 tháng 3 2017

\(\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-b=13a+2c\\f\left(-2\right)=30a+5c\\f\left(3\right)=-30a-5c\end{matrix}\right.\) \(\Rightarrow f\left(-2\right).f\left(3\right)=-\left(30a+5c\right)^2\le0\Rightarrow dpcm\)

9 tháng 3 2017

cộng f(-2)+f(3)=0(gt)

vậy hai số f(-2) và f(3) là hai số đối nhau hoặc bằng không. thế là ra rồi đấy

9 tháng 3 2017

ta có : f(-2)=4a-2b+c ; f(3)=9a+3b+c

f(-2)+f(3)=13a+b+2c=0\(\Rightarrow\)f(-2) và f(3) là hai số đối nhau hoặc cùng bằng 0\(\Rightarrow\)f(-2).f(3)=<0

25 tháng 4 2016

thay f-2 và f3 vào rồi pạn sẽ tìm ra