Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
Ta có |x-1/2|+(2x-y)200\(\le\)0
Nhận thấy |x-1/2| \(\ge\)0
(2x-y)200\(\ge\)0
=> |x-1/2|+(2x-y)200=0
=> |x-1/2|=(2x-y)200=0
=> x-1/2=2x-y=0
=> x=1/2; y= 1
a)
\(\left(x-2\right)\left(x+7\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\x+7\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\x+7\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2\le x\le-7\left(vô-lý\right)\\-7\le x\le2\end{matrix}\right.\)
=> -7 ≤ x ≤ 2
b) Em làm tương tự câu a nhé
c) \(\left(3x+1\right)\left(x-4\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1< 0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1>0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}>x>4\left(vô-lý\right)\\-\dfrac{1}{3}< x< 4\end{matrix}\right.\)
d) \(\left(x-1\right)\left(2x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)
=>x2.(-1-3-5-7)\(\le\)0
=>x2-16 \(\le\)0
mà x2>0 <=> 16 >0
=>x2=16
x=\(\sqrt{16}=4\)
bạn ơi đây là: (x2-1)*(x2-3)*(x2-5)*(x2-7) bé hơn hoặc bằng 0
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm