Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy (x2 – 4x – 3)(2x2 – 5x + 1) = 2x4 - 13x3 + 15x2 + 11x – 3
a: \(=\dfrac{x^3\left(2x-1\right)+2\left(2x-1\right)}{2x-1}=x^3+2\)
b: \(=\dfrac{2x^3-4x^2+3x^2-6x+x-2}{x-2}=2x^2+3x+1\)
d: \(=\dfrac{x^4-2x^3+3x^2+2x^3-4x^2+6x-x^2+2x-3}{x^2-2x+3}=x^2+2x-1\)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Bài 1:
\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)
\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)
\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)
Bài 2:
\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)
Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:
\(\left(y-1\right)\left(y+1\right)=120\)
\(\Leftrightarrow y^2-1=120\)
\(\Leftrightarrow y^2=121\)
\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)
+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)
+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)
\(\Leftrightarrow x^2+5x+16=0\)
\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)
Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
\(\Rightarrow\) loại
Vậy \(x\in\left\{1;-6\right\}\).
\(b,\) Đề thiếu vế phải rồi bạn.
Bài 3:
\(\Leftrightarrow x^3+64-x^3+25x=264\)
hay x=8
\(1,C=6x^2+23x-55-6x^2-23x-21=-76\\ 2,=\left(2x^4-x^2+2x^3-x-6x^2+6-3\right):\left(2x^2-1\right)\\ =\left[\left(2x^2-1\right)\left(x^2+x-6\right)-3\right]:\left(2x^2-1\right)\\ =x^2+x-6\left(dư.-3\right)\\ 3,\Leftrightarrow x^3+64-x^3+25x=264\\ \Leftrightarrow25x=200\Leftrightarrow x=8\)
1. th1: 2x-5= 2-x nếu 2x-5>0 => x>\(\dfrac{5}{2}\)
2x-5=2-x
3x= 7
x=\(\dfrac{7}{3}\)(loại)
th2: 2x-5= -2-x nếu 2x-5 <0 => x<\(\dfrac{5}{2}\)
2x-5= -2-x
x= -1 (chọn)
S={-1}
2.|3x-2|+x=11
|3x-2| = 11-x
th1: 3x-2=11-x nếu 3x-2 >0 => x>\(\dfrac{2}{3}\)
3x-2= 11-x
4x= 13
x=\(\dfrac{13}{4}\)(chọn)
th2: 3x-2= -11-x nếu 3x-2<0 => x< \(\dfrac{2}{3}\)
3x-2=-11-x
4x= -9
x= \(\dfrac{-9}{4}\)(chọn)
S={\(\dfrac{13}{4}\); \(\dfrac{-9}{4}\)}
3. th1: 2x-1= 1-2x nếu 2x-1>0 => x>\(\dfrac{1}{2}\)
2x-1=1-2x
4x= 2
x=\(\dfrac{1}{2}\) (chọn)
th2: 2x-1=-1-2x nếu 2x-1<0 => x<\(\dfrac{1}{2}\)
2x-1=-1-2x
4x= 0
x= 0 (chọn)
S={\(\dfrac{1}{2}\); 0}
=2x2-5x+1
tăng GP gì vù vù thế! khiếp