Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a﴿Ta có: |4,3‐x|\(\ge\)0﴾với mọi x﴿
nên 3,7+|4,3‐x|\(\ge\)3,7 hay A\(\ge\)3,7
Do đó, GTNN của A là 3,7 khi:|4,3‐x|=0
4,3‐x=0
x=4,3‐0
x=4,3
b﴿Ta có: |2x‐1,5|>=0﴾với mọi x﴿
‐|2x‐1,5|<=0
nên 5,5‐|2x‐1,5|<=5,5 hay B<=5,5
Do đó, GTLN của B là 5,5 khi:|2x‐1,5|=0
2x‐1,5=0
2x=0+1,5
2x=1,5
x=1,5/2=15/2=7,5
Vậy GTLN của B là 5,5 khi x=7,5
c)ta có 4x − 3 ≥ 0; 5x + 7,5 ≥ 0
⇒E ≥ 17,5
=>GTNN của C là 17,5 hi x1=3/4 hoặc x2=-1,5
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
a/ \(3,7-\left|x-4,5\right|=0\)
\(\Leftrightarrow\left|x-4,5\right|=3,7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4,5=3,7\\x-4,5=-3,7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8,2\\x=0,8\end{matrix}\right.\)
Vậy ...............
b/ \(\left(4x-3\right)\left(x-0,7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\\x-0,7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=0,7\end{matrix}\right.\)
Vậy ..
2x+3,7=4x-1,15
2x-4x=(-1,15)-3,7
(2-4)*x=-4,85
-2x=-4,85
x=-4,85/(-2)
x=-2,425