Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow 4x^2+4x+1=3(x^2-4)+18$
$\Leftrightarrow 4x^2+4x+1=3x^2+6$
$\Leftrightarrow x^2+4x-5=0$
$\Leftrightarrow (x-1)(x+5)=0$
$\Leftrightarrow x-1=0$ hoặc $x+5=0$
$\Leftrightarrow x=1$ hoặc $x=-5$
\(\left(2x+1\right)^2=3\left(x-2\right)\left(x+2\right)+18\)
\(\Leftrightarrow4x^2+4x+1=3\left(x^2-4\right)+18\)
\(\Leftrightarrow4x^2+4x+1=3x^2-12+18\)
\(\Leftrightarrow4x^2+4x+1=3x^2+6\)
\(\Leftrightarrow4x^2-3x^2+4x=6-1\)
\(\Leftrightarrow x^2+4x=5\)
\(\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow x^2+5x-x-5=0\)
\(\Leftrightarrow x\left(x+5\right)-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-5;1\right\}\)
Câu 1:
a) Ta có: 7x+21=0
\(\Leftrightarrow7x=-21\)
hay x=-3
Vậy: S={-3}
b) Ta có: 3x-2=2x-3
\(\Leftrightarrow3x-2-2x+3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
c) Ta có: 5x-2x-24=0
\(\Leftrightarrow3x=24\)
hay x=8
Vậy: S={8}
Câu 2:
a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)
b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)
c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)
Vậy: S={0;-3;-6}
Giải phương trình:
a) (x+2)3 - (x-2)3 = 12x(x-1) - 8
<=> (x2 + 3.x2.2 + 3.x.22 + 23) - (x2 - 3.x2.2 + 3.x.22 - 23) - [12x(x-1) - 8] = 0
<=> (x3 + 6x2 + 12x + 8) - (x3 - 6x2 + 12x - 8) - (12x2 - 12x - 8) = 0
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0
<=> 12x +32 = 0
<=> x = \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)
Vậy phương trình có nghiệm duy nhất là \(-2\frac{2}{3}\)
b) (3x-1)2 - 5(2x+1)2 + (6x-3)(2x+1) = (x-1)2
<=> (9x2 - 6x + 1) - 5(4x2 + 4x + 1) + 3(2x - 1)(2x + 1) - (x2 - 2x +1) = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x -1 = 0
<=> -24x - 8 = 0
<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)
Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)
a. Ta có: \(x^2-10x+26+y^2+2y=0\Leftrightarrow\left(x^2-10x+25\right)+\left(y^2+2y+1\right)=0\\ \)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)
b. \(\left(2x+5\right)^2-\left(x-7\right)^2=0\Leftrightarrow\left(2x+5+x-7\right).\left(2x+5-x+7\right)=0\)
\(\Leftrightarrow\left(3x-2\right).\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-12\end{cases}}}\)
c. \(25.\left(x-3\right)^2=49.\left(1-2x\right)^2\Leftrightarrow\left(5x-15\right)^2=\left(7-14x\right)^2\Leftrightarrow\left(5x-15\right)^2-\left(7-14x\right)^2=0\)
\(\Leftrightarrow\left(5x-15-7+14x\right).\left(5x-15+7-14x\right)=0\Leftrightarrow\left(19x-22\right).\left(-9x-8\right)=0\)
\(\Leftrightarrow\left(19x-22\right).\left(9x+8\right)=0\Leftrightarrow\orbr{\begin{cases}19x-22=0\\9x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{22}{19}\\x=-\frac{8}{9}\end{cases}}}\)
d. \(\left(x+2\right)^2=\left(3x-5\right)^2\Leftrightarrow\left(x+2\right)^2-\left(3x-5\right)^2=0\Leftrightarrow\left(x+2+3x-5\right).\left(x+3-3x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right).\left(8-2x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-3=0\\8-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=4\end{cases}}}\)
e. \(x^2-2x+1=16\Leftrightarrow\left(x-1\right)^2-16=0\Leftrightarrow\left(x-1-4\right).\left(x-1+4\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
Để \(A=\frac{2x^2+3x+3}{2x+1}\)nguyên thì :
\(\left(2x^2+3x+3\right)⋮\left(2x+1\right)\)
\(\left(2x^2+x+2x+1+2\right)⋮\left(2x+1\right)\)
\(\left[x\left(2x+1\right)+\left(2x+1\right)+2\right]⋮\left(2x+1\right)\)
\(\left[\left(2x+1\right)\left(x+1\right)+2\right]⋮\left(2x+1\right)\)
Vì \(\left(2x+1\right)\left(x+1\right)⋮\left(2x+1\right)\)
\(\Rightarrow2⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{0;-1;0,5;-1,5\right\}\)
Vậy....
2(x+4)(x-3)=0
=> (x+4)(x-3)=0
TH1: x+4=0 => x=-4
TH2: x-3=0=> x=3
vậy pt có nghiệm là ; -4;3
b) (x-1)2(3x-1)=0
TH1: x-1=0 => x=1
TH2:3x-1=0=>3x=1=>x=1/3
vậy pt có nghiệm là: 1;1/3
c) (2x/3 + 4)(2x-3) (x/2-1)=0
=> TH1: 2x/3 +4=0 => 2x/3 =-4 => 2x=-12 => x=-6
TH2: 2x-3=0 => 2x=3=>x=3/2
TH3:x/2 -1 =0 => x/2=1 => x=2
vậy pt có nghiệm là : -6;3/2;2
a, 2(x+4)(x-3)=0
(x+4)(x+3)=0
x+4=0 hoặc x+3=0
x=-4 hoặc x=-3
b,(x-1)^2(3x-1)=0
x-1=0 hoặc 3x-1=0
x=1 hoặc x=1/3
c,(2x/3+4)(2x-3)(x/2-1)=0
2x/3+4=0 hoặc 2x-3=0 hoặc x/2-1=0
x=6 hoặc x=3/2 hoặc x=2
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18=0\)
\(\Leftrightarrow\left[4\left(x^2+2x\right)+3\right]\left(x^2+2x+1\right)-18=0\)
Đặt \(t=x^2+2x\)ta có
\(\left(4t+3\right)\left(t+1\right)-18=0\)
\(\Leftrightarrow4t^2+7x-15=0\)
\(\Leftrightarrow4t^2+12t-5t-15=0\)
\(\Leftrightarrow4t\left(t+3\right)-5\left(t+3\right)=0\)
\(\Leftrightarrow\left(t+3\right)\left(4t-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+3=0\\4t-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-3\\t=\frac{5}{4}\end{cases}}}\)
Nếu \(t=-3\Rightarrow x^2+2x=-3\)
\(\Leftrightarrow x^2+2x+3=0\)
\(\Rightarrow\)x vô nghiệm vì \(x^2+2x+3>0\)với mọi x
Nếu \(t=\frac{5}{4}\Rightarrow x^2+2x=\frac{5}{4}\)
\(\Leftrightarrow x^2+2x-\frac{5}{4}=0\)
\(\Leftrightarrow4x^2+8x-5=0\)
\(\Leftrightarrow4x^2-2x+10x-5=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}}\)
Vậy \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)
P/s tham khảo nha