Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (2x-3)2 = 36
(2x-3)2 = 62
=> TH1: 2x - 3 = 6
2x = 9
x = 9/2
TH2: 2x - 3 = -6
2x = -6 + 3
2x = -3
x = -3/2
Vậy x \(\in\){ -3/2 ; 9/2)
Câu b tương tự
a.(2x-3)^2=36
\(\Rightarrow\left(2x-3\right)^2=6^2\)
\(\Rightarrow2x-3=6\)
\(\Rightarrow2x=9\)\(\Rightarrow x=9:2=\frac{9}{2}\)
\(\left(\frac{\frac{17}{24}.9\frac{1}{2}-3\frac{1}{4}.\frac{17}{24}}{3\frac{1}{2}.2\frac{13}{36}+2\frac{13}{36}.2\frac{3}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(9\frac{1}{2}-3\frac{1}{4}\right)}{2\frac{13}{36}.\left(3\frac{1}{2}+2\frac{3}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(\frac{19}{2}-\frac{13}{4}\right)}{\frac{85}{36}.\left(\frac{7}{2}+\frac{11}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{19.2-13}{4}}{\frac{85}{36}.\frac{7.2+11}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{25}{4}}{\frac{85}{36}.\frac{25}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}:\frac{85}{36}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}.\frac{36}{85}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3}{10}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3-5}{10}\right)^{-2}\)
\(=\left(\frac{-1}{5}\right)^{-2}\)
\(=\frac{1}{\left(-\frac{1}{5}\right)^2}=\frac{1}{\frac{\left(-1\right)^2}{5^2}}=\frac{1}{\frac{1}{25}}=25\)
`2x -2/3 +1/2x =-1`
`=> 2x+1/2x =-1+2/3`
`=> (2+1/2) x =-3/3 + 2/3`
`= 5/2 x = -1/3`
`=> x=-1/3 : 5/2`
`=>x= -2/15`
`31/36 - (1/3-x)^2 =5/6`
`=> (1/3-x)^2 = 31/36 - 5/6`
`=> (1/3-x)^2 =1/36`
`=> (1/3-x)^2 = (+-1/6)^2`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{3}-x=\dfrac{1}{6}\\\dfrac{1}{3}-x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{1}{2}\end{matrix}\right.\)
`#3107.101107`
`(2x - 3)^2 = 36`
`=> (2x - 3)^2 = (+-6)^2`
`=>`\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `x \in {-3/2; 9/2}.`
\(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy: ...
\(\left(2x-3\right)^2-13=36.\)
\(\left(2x-3\right)^2=36+13\)
\(\left(2x-3\right)^2=49\)
\(\left(2x-3\right)^2=7^2\)hoặc \(\left(-7\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-3=7\\2x-3=-7\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x=10\\2x=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)