K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

Ta có:

\(\begin{cases}\left|2x-1\right|\ge0\\\left(x+y+10\right)^{2016}\ge0\end{cases}\)

\(\Rightarrow\left|2x-1\right|+\left(x+y+10\right)^{2016}\ge0\) (1)

Mà theo đề thì ta có : \(\left|2x-1\right|+\left(x+y+10\right)^{2016}\le0\) (2)

Từ (1) và (2) \(\Rightarrow\left|2x-1\right|+\left(x+y+10\right)^{2016}=0\)

\(\Rightarrow\begin{cases}\left|2x-1\right|=0\\\left(x+y+10\right)^{2016}=0\end{cases}\)

Ta có: \(\left|2x-1\right|=0\Rightarrow2x-1=0\Rightarrow2x=1\Rightarrow x=0,5\)

Thay x = 1/2 vào \(\left(x+y+10\right)^{2016}=0\), ta đc:

\(\left(0,5+y+10\right)^{2016}=0\Rightarrow10,5+y=0\Rightarrow y=-10,5\)

Vậy x = 0,5 ; y = -10,5

22 tháng 6 2016

nhanh trước 8h sẽ có tích cho những ng trả lời dc

22 tháng 6 2016

trước 8 h có câu trả lời dc 3

Đề thiếu hoặc sai ấy bạn 

Vì ( x + y + 10 ) 2016  > 0

Với lại phải xét 2 trường hợp :

 / 2x + 1 / âm 

và / 2x + 1 / dương

25 tháng 6 2017

Bài 1:

a, \(x^2-6x+10=x^2-3x-3x+9+1\)

\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy................... (đpcm)

b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2x-2x+4+1\right)\)

\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)

\(=-\left[\left(x-2\right)^2+1\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)

Vậy............... (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5\)

\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)

Với mọi giá trị của \(x\in R\)ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Hay \(P\ge4\) với mọi giá trị của \(x\in R\).

Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)

\(\Rightarrow x=1\)

Vậy........

b, Xem lại đề.

c, \(M=x^2+y^2-x+6y+10\)

\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x;y\in R\)ta có:

\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).

Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy............

Chúc bạn học tốt!!!

13 tháng 8 2016

1.4m+7n=0

=>4m=-7n

=>mx2-4m=0

=>m(x2-4)=0

=>m=0 hoặc x=2 hoặc x=-2

26 tháng 9 2016

Các bạn ơi giúp minh đi chiêu mai mình học rồi khocroikhocroi

Cảm ơn các bạn rất nhiều