Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=15\\2x-15=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15}{2}\\2x=16;14\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15}{2}\\x=8;7\end{cases}}\)
\(\Rightarrow\left(2x-15\right)^5=\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=15\\2x-15=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7,5\\x=8;7\end{cases}}\)
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=\dfrac{86}{2}\\ x=43\)
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=15^{10}:3^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=5^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=86:2\\ x=43\)
1. 2x=16\(\Rightarrow\)X=4
2. 22x-1=27
\(\Rightarrow\)27=22.4-1
Vậy x =4
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
(2x-5)3-12 = 15
(2x-5)3 = 27
(2x-5)3 = 93
=> TH1: 2x-5 = 9
2x = 14
x = 7
TH2: 2x-5 = -9
2x = -4
x = -2
(2x - 15)5 = (2x-15)3
<=> (2x-15) = 0 hoặc (2x-15) = 1
+ TH1: (2x-15)5 = (2x-15)3
05 = 03 = 0
+ TH2: (2x-15)5 = (2x-15)3
15 = 13 = 1
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3\cdot\left[\left(2x-15\right)^2-1\right]=0\)
\(\hept{\begin{cases}2x-15=0\\\left(2x-15\right)^2-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{15}{2}\\\left(2x-15\right)^2=1\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{15}{2}\\\hept{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Rightarrow\hept{\begin{cases}x=8\\x=7\end{cases}}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{15}{2}\\\hept{\begin{cases}2x-15=1\\2x-15=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=8\\x=7\end{cases}}\end{cases}}\)