Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399
=> 3S = 3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100
Lấy 3S + S = (3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100 ) + ( 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399 )
4S = 3100 + 1
=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên)
=> 3100 : 4 dư 1
b10:
1.\(A=\left(\frac{999-1}{2}+1\right).\frac{999+1}{2}=250000\)
2. \(B=\left(1+3+...+2017\right)-\left(2+4+...+2016\right)\)
\(=2017.\frac{2017+1}{2}-\left(\frac{2016-2}{2}+1\right).\frac{2016+2}{2}\)
đến đây bạn bấm máy đi nhé!
3. \(C=3+3^2+3^3+...+3^{99}\left(1\right)\)
Nhân hai vế của (1) vs số 3 ta được:
\(3C=3^2+3^3+...+3^{100}\left(2\right)\)
Lấy (2)-(1) theo vế ta được: \(3C-C=3^{100}-3\)
=> C=\(\frac{3^{100}-3}{2}\)
4. Làm giống hết câu 3 luôn nhé, chỉ là nhân với 4 thôi.
a. Ta có:
\(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.71\)
\(72^{44}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71\)
Vì \(72^{44}.71>72^{43}.71\)
\(\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}\)
\(A = 1 + 2 + 2^2 + 2^3+ ... + 2^{63}\)
\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)
\(2A-A=2+2^2+2^3+...+2^{63}+2^{64}-\left(1+2+2^2+2^3+...+2^{63}\right)\)
\(\Rightarrow A=2^{64}-1\)
c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4
==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)
==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11
==> 4C= 8.9.10.11=7920
==> C= 7920 :4=1980
a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3
3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)
3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900 - 0
3A= 999900
==> A= 999900 : 3
==> A= 333300
1/
Gọi tổng này là A.
A=6+62+63+64+...+697+698+699+6100
A=(6.1+6.6+6.62+6.63)+...+(697.1+697.6+697.62+697.63)
A=6.(1+6+62+63)+...+697.(1+6+62+63)
A=6.259+...+697.259
A=259.(6+...+697) chia hết cho 259
2/
(hình như số cuối cùng phải là 1000)
3/
Không,vì còn số 0 và 1 không là số nguyên tố hay hợp số
đề câu số 5 là chia hết cho \(5^n\)chứ ko phải là 5 đâu bạn