K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

\(2\times\left|x-\frac{2}{3}\right|-\frac{1}{5}=0.\)

\(2\times\left|x-\frac{2}{3}\right|=\frac{1}{5}\)

\(\left|x-\frac{2}{3}\right|=\frac{1}{5}\)\(2\)

\(\left|x-\frac{2}{3}\right|=\frac{1}{10}\)

\(\Rightarrow\)\(x-\frac{2}{3}=\frac{1}{10}\)hoặc \(-\frac{1}{10}\)

\(\Rightarrow\)\(x=\frac{1}{10}+\frac{2}{3}\)hoặc \(-\frac{1}{10}+\frac{2}{3}\)

\(\Rightarrow\)\(x=\frac{23}{30}\)hoặc \(\frac{17}{30}\)

Vậy \(x\in\)\(\frac{23}{30}\)\(\frac{17}{30}\)}

12 tháng 7 2021

\(2\left|x-\frac{2}{3}\right|-\frac{1}{5}=0\)

\(\Leftrightarrow2\left|x-\frac{2}{3}\right|=\frac{1}{5}\)

\(\Leftrightarrow\left|x-\frac{2}{3}\right|=\frac{1}{10}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{1}{10}\\x-\frac{2}{3}=-\frac{1}{10}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23}{30}\\x=\frac{17}{30}\end{cases}}\)

Vậy ....

9 tháng 10 2016

Bài 1:

Giải:

Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)

+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )

+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)

\(\Rightarrow5x-2x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)

\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)

\(\Rightarrow10+30y=12+60y\)

\(\Rightarrow10-12=60y-30y\)

\(\Rightarrow-2=30y\)

\(\Rightarrow y=\frac{-1}{15}\)

Vậy \(x=2,y=\frac{-1}{15}\)

 

 

26 tháng 9 2016

Bài 1:

\(\text{Giả sử: }\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)

\(\Rightarrow x=2k;y=4k;z=6k\)

Thay vào: x-y +z= 2k- 4k+ 6k= 8

                           = 4k= 8

=> k= \(\frac{8}{4}=2\)

=> x= 2. 2= 4

     y= 4. 2= 8

     z= 6.2 = 12

Vậy \(\begin{cases}x=4\\y=8\\z=12\end{cases}\)

 

 

26 tháng 9 2016

Bài 2:

Giải:

Gọi số học sinh 4 khối 6, 7, 8, 9 là a, b, c, d ( a,b,c,d thuộc N* )

Ta có: \(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}\) và a + b + c + d = 660

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}=\frac{a+b+c+d}{3+3,5+4,5+4}=\frac{660}{15}=44\)

+) \(\frac{a}{3}=44\Rightarrow a=132\)

+) \(\frac{b}{3,5}=44\Rightarrow b=154\)

+) \(\frac{c}{4,5}=44\Rightarrow c=198\)

+) \(\frac{d}{4}=44\Rightarrow d=176\)

Vậy khối 6 có 132 học sinh

        khối 7 có 154 học sinh

        khối 8 có 198 học sinh

        khối 9 có 176 học sinh

 

14 tháng 12 2017

bạn ơi đề thiếu

24 tháng 3 2019

Bài 3: 

Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)

Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))

=> a = 9.1 = 9

Ta có: x2 = 9 và y2 = 1

=> x = -3, 3

     y = -1; 1

24 tháng 3 2019

Mình làm bài 4, bài 5 làm tương tự bài 4 nhé

Biết rằng: \(\left|A\right|\ge A\)

\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)

Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Với x = 5 thì A đạt gtnn là: 4

15 tháng 10 2016

Bài 1: 

a) Ta có: 7x = 4y => x/4 = y/7

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/4 = y/7 = y - x / 7 - 4 = 24/3 = 8

x/4 = 8 => x = 8 . 4 = 32

y/7 = 8 => y = 8 . 7 = 56

Vậy x = 32 và y = 56

b) Ta có: x/5 = y/6 => x/20 = y/24 (1)

y/8 = z/7 => y/24 = z/21 (2)

Từ (1) và (2) => x/20 = y/24 = z/21

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/20 = y/24 = z/21 = x + y - z / 20 + 24 - 21 = 69/23 = 3

x/20 = 3 => x = 3 . 20 = 60

y/24 = 3 => y = 3 . 24 = 72

z/21 = 3 => z = 3 . 21 = 63

Vậy x = 60; y = 72 và z = 63

c) Đặt x/3 = y/4 = k

=> x = 3k và y = 4k

Ta có: x^2 . y^2 = 144

=> (3k)^2 . (4k)^2 = 144

=> 9 . k^2 . 16 . k^2 = 144

=> 144 . k^4 = 144

=> k^4 = 144 : 144 = 1

=> k = 1 hoặc k = -1

Nếu k = 1 => x = 1 . 3 = 3; y = 1 . 4 = 4

Nếu k = -1 => x = -1 . 3 = -3; y = -1 . 4 = -4

Vậy x = {-3; 3} và y = {-4; 4}

 

 

16 tháng 10 2016

b m n a O

* Vẽ hình hơi xấu chút leuleu

Vì Om vuông góc với Oa nên \(\widehat{mOb}\) = 900

Vì On vuông góc với Ob nên \(\widehat{bOn}\) = 900

Vì tia Om nằm giữa 2 tia Oa và Ob nên:

          \(\widehat{aOm}+\widehat{mOb}=\widehat{aOb}\)

Hay      900 + \(\widehat{mOb}\) = 1200

=> \(\widehat{mOb}\) = 1200 - 900

=> \(\widehat{mOb}\) = 300

Vì tia On nằm giữa 2 tia Oa và Ob nên:

          \(\widehat{bOn}+\widehat{nOa}=\widehat{aOb}\)

Hay      900 + \(\widehat{nOa}\) = 1200

=> \(\widehat{nOa}\) = 1200 - 900

=> \(\widehat{nOa}\) = 300

=> \(\widehat{nOa}=\widehat{mOb}\) (= 300)

Vậy  \(\widehat{nOa}=\widehat{mOb}\) 

 

 

 

 

 

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

 

7 tháng 3 2017

\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)

\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)

\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)

\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)

7 tháng 3 2017

101/12 bạn nha

CHÚC BẠN HỌC GIỎI