K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2019

\(A=\sqrt[3]{2^3+3.2^2.\sqrt{2}+3.2.\sqrt{2}^2+\sqrt{2}^3}+\sqrt[3]{\sqrt{2}^3-3.\sqrt{2}^2.2+3.\sqrt{2}.2^2-2^3}\)

\(A=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(\sqrt{2}-2\right)^3}\)

\(A=2+\sqrt{2}+\sqrt{2}-2=2\sqrt{2}\)

\(X=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)

\(\Rightarrow X^3=\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)^3\)

\(\Rightarrow X^3=2+3\sqrt[3]{1-\frac{84}{81}}\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)\)

\(\Rightarrow X^3=2-3\sqrt[3]{\frac{1}{27}}.X\)

\(\Rightarrow X^3=2-X\)

\(\Rightarrow X^3+X-2=0\)

\(\Rightarrow\left(X-1\right)\left(X^2+2X+2\right)=0\)

\(\Rightarrow X=1\) (do \(X^2+2X+2=\left(X+1\right)^2+1>0\) \(\forall X\))

Chọn A

24 tháng 6 2021

`x=root{3}{14sqrt2+20}+sqrt{-14sqrt2+20}`

`<=>x^3=14sqrt2+20-14sqrt2+20+3root{3}{(14sqrt2+20)(20-14sqrt2)}(root{3}{14sqrt2+20}+sqrt{-14sqrt2+20})`

`<=>x^3=40+3root{3}{400-392}.x`

`<=>x^3=40+6x`

`<=>x^3-6x=40`

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$