Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)\(\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)
b)\(9a^2+3ab+\frac{1}{4}a^2\)
2.
a)\(\left(5x+2b\right)^2\)
b)\(\left(x+1\right)^2\)
c)\(\left(3x+1\right)^2\)
d)\(\left[\left(2x+3y\right)+1\right]^2\)
1.
\(\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)
\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)
\(=5x^2-3xy^2+4y\)
2.
a) \(27x^4-8x=x\left(27x^3-8\right)\)
\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(16x^2y-4xy^2-4x^3+x^2y\)
\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)
\(=x\left(4x-y\right)\left(4y-x\right)\)
c) \(x^2-2x-5+2\sqrt{5}\)
\(=\left(x-1\right)^2-6+2\sqrt{5}\)
\(=\left(x-1\right)^2-\left(6-2\sqrt{5}\right)=\left(x-1\right)^2-\left(\sqrt{5}-1\right)^2\)
\(=\left(x-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)\)
Bài 1:
\(\left(25x^4y^3-15x^3y^5+20x^2y^4\right):\left(5x^2y^3\right)\)
\(=\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)
\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)
\(=5x^2-3xy^2+4y\)
Bài 2:
a) \(27x^4-8x\)
\(=x\left(3x-2\right)\left(3^2x^2+2.3x+2^2\right)\)
\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(16x^2y-4xy^2-4x^3+x^2y\)
\(=4y^2+x^2-\left(4x^2\right)^2\)
\(=x\left(-4x^2+xy+4y^2\right)\)
It's khai triển :)
a) \(\left(5x-x^2\right)\left(5x+x^2\right)=25x^2-x^4\)
b) \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)=8x^3-y^3\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)=x^3-27\)
d) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
e) \(x^2-2x+9=\left(x-1\right)^2+8??\) ko ra gì cả-.-
g) \(\left(x+1\right)\left(x-1\right)=x^2-1\)
h) \(\left(x-2y\right)\left(x+2y\right)=x^2-4y^2\)
i) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
1,
\(\left(\frac{2}{3}x+y\right)^2=\left(\frac{2}{3}x\right)^2+2.\frac{2}{3}x.y+\left(y\right)^2=\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)
\(\left(3a+\frac{1}{2}b\right)^2=\left(3a\right)^2+2.3a.\frac{1}{2}b+\left(\frac{1}{2}b\right)^2=9a^2+3ab+\frac{1}{4}b^2\)
2,
\(25a^2+4b^2+20ab=\left(5a\right)^2+\left(2b\right)^2+2.5a.2b=\left(5a+2b\right)^2\)
\(x^2+2x+1=\left(x\right)^2+2.x.1+\left(1\right)^2=\left(x+1\right)^2\)
\(9x^2+6x+1=\left(3x\right)^2+2.3x.1+\left(1\right)^2=\left(3x+1\right)^2\)
\(\left(2x+3y\right)^2+2.\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
\(2-25x^2=0\Leftrightarrow25x^2=2\Leftrightarrow x^2=\frac{2}{25}\Leftrightarrow x=\frac{\sqrt{2}}{5}\)
ta có :\(2-25x^2=0\)
\(\sqrt{2}^2-\left(5x\right)^2=0\)
\(\left(\sqrt{2}-5x\right)\left(\sqrt{2}+5x\right)=0\)
suy ra \(\orbr{\begin{cases}\sqrt{2}-5x=0\\\sqrt{2}+5x=0\end{cases}}\)tương đương \(\orbr{\begin{cases}5x=\sqrt{2}\\5x=-\sqrt{2}\end{cases}}\)tương đương \(\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
Vậy \(x=\frac{\sqrt{2}}{5}\)hoặc \(x=-\frac{\sqrt{2}}{5}\)
\(25a^2\) chứ :)?
\(25x^2\) hay \(25a^2\) ?