K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}

28 tháng 11 2019

@Nguyễn Việt Lâm

30 tháng 11 2019

@Akai Haruma

NV
29 tháng 10 2020

Đặt \(\left\{{}\begin{matrix}2x+3=a\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

Pt trở thành:

\(a^2+2b^2-3ab=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=2x+3\\2\sqrt{x^2-x+1}=2x+3\end{matrix}\right.\)

\(\Leftrightarrow...\)

3 tháng 1 2021

Phương trình đã cho tương đương 

\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)

Để phương trình có 2 nghiệm phân biệt thì

\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)

⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)

( ( ( 0 15 33 +∞ Dựa vào trục số, (1) ⇔ m > 0

Vậy điều kiện của m là m > 0 

Sai thì thứ lỗi ạ !

 

NV
12 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:

\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)

Theo Viet đảo, \(a^2;b^2\) là nghiệm của:

\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

NV
12 tháng 11 2019

2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(

b/ Đặt \(x=cos2t\) pt trở thành:

\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)

\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)

27 tháng 2 2022

trả lời giúp em

NV
3 tháng 3 2022

ĐKXĐ: \(x\ge-2;y\ge-11\)

\(x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\)

\(\Leftrightarrow x^2+\left(y+21\right)x-2y^2-33y-100=0\)

\(\Delta=\left(y+21\right)^2+4\left(2y^2+33y+100\right)=\left(3y+29\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-y-21+3y+29}{2}=y+4\\x=\dfrac{-y-21-3y-29}{2}=-2y-25\end{matrix}\right.\)

TH1: \(x=-2y-25\Rightarrow x+2y=-25\)

Mà \(x+2y\ge-2+2.\left(-11\right)=-23>-25\)

\(\Rightarrow\) Pt vô nghiệm

TH2:  \(x=y+4\) thay vào pt dưới:

\(\sqrt{y+6}+2\sqrt{y+11}=\sqrt{\left(3y+10\right)^3}\)

\(\Leftrightarrow\sqrt{y+6}-2+2\sqrt{y+11}-6=\sqrt{\left(3y+10\right)^3}-8\)

\(\Leftrightarrow\dfrac{y+2}{\sqrt{y+6}+2}+\dfrac{2\left(y+2\right)}{\sqrt{y+11}+3}=\dfrac{3\left(y+2\right)\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\Rightarrow x=2\\\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}=\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\left(1\right)\end{matrix}\right.\)

Xét (1), ta có:

\(\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}< \dfrac{1}{2}+\dfrac{2}{3}< 2\)

\(\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}=\dfrac{3\left(3y+14\right)}{\sqrt{3y+10}+2}+6>2\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(2;-2\right)\)

3 tháng 3 2022

https://hoc24.vn/cau-hoi/.5005119341955 hỗ trợ em với thầy

(x^2-10x+21)(x^3-x)=0

=>(x-3)(x-7)*x*(x^2-1)=0

=>x thuộc {0;1;-1;3;7}

=>B={0;1;-1;3;7}

12 tháng 8 2023

Ta có:

\(\left(x^2-10x+21\right)\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x^2-3x-7x+21\right)x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-7\right)x\left(x-1\right)=0\) (ĐK: \(x\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\\x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow B=\left\{1;3;7;0\right\}\)