Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kha sdaif dòng mik xin phép trình bày bằng lời ạ :
a) tìm MTC rồi quy đồng lên làm bình thường ại , tử cộng tử mấu giữ nguyên
b) cx vậy ạ tách mẫu tìm MTC rồi ....
~ hok tốt ~
a) \(\dfrac{y}{xy-5x^2}-\dfrac{15y-25x}{y^2-25x^2}=\dfrac{y}{x\left(y-5x\right)}-\dfrac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)
\(=\dfrac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\dfrac{x\left(15y-25x\right)}{x\left(y-5x\right)\left(y+5x\right)}\)
\(=\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
\(=\dfrac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
\(=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)
\(=\dfrac{y-5x}{x\left(y+5x\right)}\)
b: \(=\dfrac{2}{x+2y}-\dfrac{1}{2y-x}+\dfrac{4y}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x-4y+x+2y+4y}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{3x+2y}{\left(x-2y\right)\left(x+2y\right)}\)
x2 + y2 + 10x + 6y + 34 = 0
=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0
=> (x + 5)2 + (y + 3)2 = 0
=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Vậy x = - 5 ; y = -3
b) 25x2 + 4y2 + 10x + 4y + 2 = 0
=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0
=> (5x + 1)2 + (2y + 1)2 = 0
=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)
Vậy x = -0,2 ; y = -0,5
a)
\(x^2+10x+25+y^2+6y+9=0\)
\(\left(x+5\right)^2+\left(y+3\right)^2=0\) ( 1 )
Ta có :
\(\left(x+5\right)^2\ge0\forall x\)
\(\left(y+3\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)
\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
b)
\(25x^2+10x+1+4y^2+4y+1=0\)
\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 )
Ta có :
\(\left(5x+1\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)
a) \(-y^2+\dfrac{1}{9}\)
= \(-\left(y^2-\dfrac{1}{9}\right)\)
= \(-\left(y-\dfrac{1}{3}\right)\left(y+\dfrac{1}{3}\right)\)
b) \(4\left(x-3\right)^2-9\left(x+1\right)^2\)
= \(\left(2x-3\right)^2-\left(3x+3\right)^2\)
= \(\left(2x-3+3x+3\right)\left(2x-3-3x-3\right)\)
= \(5x\left(-x-6\right)\)
c) \(25x^2-20xy+4y^2\)
= \(\left(5x-2y\right)^2\)
d) \(-9x^2+12xy-4y^2\)
= \(-\left(9x^2-12xy+4y^2\right)\)
= \(-\left(3x-2y\right)^2\)
e) \(25x^2-\dfrac{1}{8}x^2y^2\)
= \(\left(5x-\dfrac{\sqrt{2}}{4}xy\right)\left(5x+\dfrac{\sqrt{2}}{4}xy\right)\)
f) \(9x^2+6x+1\)
= \(\left(3x+1\right)^2\)
okey! Vì you t sẽ chăm thêm 1 lần nữa!!!^^
\(a.-y^2+\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2-y^2=\left(\dfrac{1}{3}-y\right)\left(\dfrac{1}{3}+y\right)\)
\(b,4\left(x-3\right)^2-9\left(x+1\right)^2=\left[2\left(x-3\right)\right]^2-\left[3\left(x+1\right)\right]^2=\left(2x-6\right)^2-\left(3x+3\right)^2=\left(2x-6-3x-3\right)\left(2x-6+3x+3\right)=\left(-x-9\right)\left(5x-3\right)\)\(c,25x^2-20xy+4y^2=\left(5x-2y\right)^2\)
\(d,-9x^2+12xy-4y^2=-\left(3x-2y\right)^2\)
\(e,25x^2-\dfrac{1}{8}x^2y^2=\left(5x-\dfrac{\sqrt{2}}{4}xy\right)\left(5x+\dfrac{\sqrt{2}}{4}xy\right)\)\(f,9x^2+6x+1=\left(3x+1\right)^2\)
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
\(25x^2+40x+16\)
\(=\left(5x\right)^2+2.5x.4+4^2\)
\(=\left(5x+4\right)^2\)
\(=\left(5x-2y\right)\left[\left(5x\right)^2+5x\cdot2y+\left(2y\right)^2\right]\)
=(5x)^3-(2y)^3
=125x^3-8y^3
A.25x^2 -40xy +4y^2 (sai đầu đề đãng lẽ là 40xy phải là 20xy mới tính đc)
=(5x)^2-2.5x.2y+(2y)^2
=(5x-2y)^2
B. x^2 +40x+400
=x^2+2.x.20 +(20)^2
=(x+20)^2
C.25x^2 +100xy +100y^2
=(5x)^2 +2.5x.10y+(10y)^2
= (5x+10y)^2